Sensitivity Analysis in Convex Optimization through the Circatangent Derivative


Autoria(s): García Castaño, Fernando; Melguizo Padial, Miguel Ángel
Contribuinte(s)

Universidad de Alicante. Departamento de Matemática Aplicada

Sistémica, Cibernética y Optimización (SCO)

Data(s)

22/09/2016

22/09/2016

01/05/2015

Resumo

The main goal of this paper is to analyse the sensitivity of a vector convex optimization problem according to variations in the right-hand side. We measure the quantitative behavior of a certain set of Pareto optimal points characterized to become minimum when the objective function is composed with a positive function. Its behavior is analysed quantitatively using the circatangent derivative for set-valued maps. Particularly, it is shown that the sensitivity is closely related to a Lagrange multiplier solution of a dual program.

Research partially supported by the University of Alicante, project GRE11-08.

Identificador

Journal of Optimization Theory and Applications. 2015, 165(2): 420-438. doi:10.1007/s10957-014-0609-4

0022-3239 (Print)

1573-2878 (Online)

http://hdl.handle.net/10045/58141

10.1007/s10957-014-0609-4

Idioma(s)

eng

Publicador

Springer Science+Business Media New York

Relação

http://dx.doi.org/10.1007/s10957-014-0609-4

Direitos

© Springer Science+Business Media New York 2014. The final publication is available at Springer via http://dx.doi.org/10.1007/s10957-014-0609-4

info:eu-repo/semantics/openAccess

Palavras-Chave #Convex optimization #Sensitivity analysis #Set-valued map #Circatangent derivative #Matemática Aplicada
Tipo

info:eu-repo/semantics/article