A natural extension of the classical envelope theorem in vector differential programming


Autoria(s): García Castaño, Fernando; Melguizo Padial, Miguel Ángel
Contribuinte(s)

Universidad de Alicante. Departamento de Matemática Aplicada

Sistémica, Cibernética y Optimización (SCO)

Data(s)

22/09/2016

22/09/2016

01/12/2015

Resumo

The aim of this paper is to extend the classical envelope theorem from scalar to vector differential programming. The obtained result allows us to measure the quantitative behaviour of a certain set of optimal values (not necessarily a singleton) characterized to become minimum when the objective function is composed with a positive function, according to changes of any of the parameters which appear in the constraints. We show that the sensitivity of the program depends on a Lagrange multiplier and its sensitivity.

This work has been partially supported by the Generalitat Valenciana project GV/2014/072 and Universidad de Alicante project GRE11-08.

Identificador

Journal of Global Optimization. 2015, 63(4): 757-775. doi:10.1007/s10898-015-0307-2

0925-5001 (Print)

1573-2916 (Online)

http://hdl.handle.net/10045/58143

10.1007/s10898-015-0307-2

Idioma(s)

eng

Publicador

Springer Science+Business Media New York

Relação

http://dx.doi.org/10.1007/s10898-015-0307-2

Direitos

© Springer Science+Business Media New York 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/s10898-015-0307-2

info:eu-repo/semantics/openAccess

Palavras-Chave #Envelope theorem #Set-valued map #Tangential regularity #Contingent or bouligand derivative #Clarke derivative #Matemática Aplicada
Tipo

info:eu-repo/semantics/article