A natural extension of the classical envelope theorem in vector differential programming
Contribuinte(s) |
Universidad de Alicante. Departamento de Matemática Aplicada Sistémica, Cibernética y Optimización (SCO) |
---|---|
Data(s) |
22/09/2016
22/09/2016
01/12/2015
|
Resumo |
The aim of this paper is to extend the classical envelope theorem from scalar to vector differential programming. The obtained result allows us to measure the quantitative behaviour of a certain set of optimal values (not necessarily a singleton) characterized to become minimum when the objective function is composed with a positive function, according to changes of any of the parameters which appear in the constraints. We show that the sensitivity of the program depends on a Lagrange multiplier and its sensitivity. This work has been partially supported by the Generalitat Valenciana project GV/2014/072 and Universidad de Alicante project GRE11-08. |
Identificador |
Journal of Global Optimization. 2015, 63(4): 757-775. doi:10.1007/s10898-015-0307-2 0925-5001 (Print) 1573-2916 (Online) http://hdl.handle.net/10045/58143 10.1007/s10898-015-0307-2 |
Idioma(s) |
eng |
Publicador |
Springer Science+Business Media New York |
Relação |
http://dx.doi.org/10.1007/s10898-015-0307-2 |
Direitos |
© Springer Science+Business Media New York 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/s10898-015-0307-2 info:eu-repo/semantics/openAccess |
Palavras-Chave | #Envelope theorem #Set-valued map #Tangential regularity #Contingent or bouligand derivative #Clarke derivative #Matemática Aplicada |
Tipo |
info:eu-repo/semantics/article |