Optimal control problem for deflection plate with crack


Autoria(s): Chuquipoma, J. A. D.; Raposo, C. A.; Bastos, W. D.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/07/2012

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

We consider a control problem where the state variable is defined as the solution of a variational inequality. This system describes the vertical displacement of points of a thin plate with the presence of crack inside [7]. As the control we define the force that originates the deection of the plate. In order to get the system of optimality for the control problem we use a penalized problem [1] and its reformation as a Lagrangian problem. We prove the existence of a Lagrange multiplier to obtain a system of optimality to the exact problem via Lagrangian. Applying the method of bounded increments [19] we get the final result that characterizes the optimal state and control.

Formato

397-417

Identificador

http://dx.doi.org/10.1007/s10883-012-9150-7

Journal of Dynamical and Control Systems. New York: Springer/plenum Publishers, v. 18, n. 3, p. 397-417, 2012.

1079-2724

http://hdl.handle.net/11449/42062

10.1007/s10883-012-9150-7

WOS:000306547800007

Idioma(s)

eng

Publicador

Springer/plenum Publishers

Relação

Journal of Dynamical and Control Systems

Direitos

closedAccess

Palavras-Chave #Optimal control #optimality system #penalty problem #method of bounded increments
Tipo

info:eu-repo/semantics/article