988 resultados para Autonomous learning
Resumo:
Pós-graduação em Estudos Linguísticos - IBILCE
Resumo:
Objetiva investigar como as crenças sobre o ensino e aprendizagem de inglês de quatro alunas do curso de Letras da UFPA influenciam, positiva ou negativamente, sua prontidão para a aprendizagem autônoma. Os princípios desta pesquisa são qualitativos com a utilização de narrativas, questionário e entrevista para coleta e posterior triangulação de dados. Ao analisar as crenças e sua relação com a aprendizagem autônoma, constatamos que professores e alunos podem construir um novo entendimento do processo de ensino e aprendizagem, assim como podem compreender melhor o papel que desempenham nele. Essa conscientização é um dos importantes fundamentos da autonomia.
Resumo:
In this action research study of my two high school geometry classrooms, I investigated the use of homework. By changing the focus on homework away from the answers to the process involved in getting the answers, I found that students felt more confident, utilized their class time better, and placed more effort on complex problems. Their questions also became more specific and more effective for finding gaps in their understanding. As a result of this research, I plan to change my strategy in the practice of homework. I will give students the answers on multi-step problems to allow them the opportunity to utilize problem solving and critical thinking skills to gain practice in autonomous learning.
Resumo:
El objetivo de esta tesis es el desarrollo de un sistema completo de navegación, aprendizaje y planificación para un robot móvil. Dentro de los innumerables problemas que este gran objetivo plantea, hemos dedicado especial atención al problema del conocimiento autónomo del mundo. Nuestra mayor preocupación ha sido la de establecer mecanismos que permitan, a partir de información sensorial cruda, el desarrollo incremental de un modelo topológico del entorno en el que se mueve el robot. Estos mecanismos se apoyan invariablemente en un nuevo concepto propuesto en esta tesis: el gradiente sensorial. El gradiente sensorial es un dispositivo matemático que funciona como un detector de sucesos interesantes para el sistema. Una vez detectado uno de estos sucesos, el robot puede identificar su situación en un mapa topológico y actuar en consecuencia. Hemos denominado a estas situaciones especiales lugares sensorialmente relevantes, ya que (a) captan la atención del sistema y (b) pueden ser identificadas utilizando la información sensorial. Para explotar convenientemente los modelos construidos, hemos desarrollado un algoritmo capaz de elaborar planes internalizados, estableciendo una red de sugerencias en los lugares sensorialmente relevantes, de modo que el robot encuentra en estos puntos una dirección recomendada de navegación. Finalmente, hemos implementado un sistema de navegación robusto con habilidades para interpretar y adecuar los planes internalizados a las circunstancias concretas del momento. Nuestro sistema de navegación está basado en la teoría de campos de potencial artificial, a la que hemos incorporado la posibilidad de añadir cargas ficticias como ayuda a la evitación de mínimos locales. Como aportación adicional de esta tesis al campo genérico de la ciencia cognitiva, todos estos elementos se integran en una arquitectura centrada en la memoria, lo que pretende resaltar la importancia de ésta en los procesos cognitivos de los seres vivos y aporta un giro conceptual al punto de vista tradicional, centrado en los procesos. The general objective of this thesis is the development of a global navigation system endowed with planning and learning features for a mobile robot. Within this general objective we have devoted a special effort to the autonomous learning problem. Our main concern has been to establish the necessary mechanisms for the incremental development of a topological model of the robot’s environment using the sensory information. These mechanisms are based on a new concept proposed in the thesis: the sensory gradient. The sensory gradient is a mathematical device which works like a detector of “interesting” environment’s events. Once a particular event has been detected the robot can identify its situation in the topological map and to react accordingly. We have called these special situations relevant sensory places because (a) they capture the system’s attention and (b) they can be identified using the sensory information. To conveniently exploit the built-in models we have developed an algorithm able to make internalized plans, establishing a suggestion network in the sensory relevant places in such way that the robot can find at those places a recommended navigation direction. It has been also developed a robust navigation system able to navigate by means of interpreting and adapting the internalized plans to the concrete circumstances at each instant, i.e. a reactive navigation system. This reactive system is based on the artificial potential field approach with the additional feature introduced in the thesis of what we call fictitious charges as an aid to avoid local minima. As a general contribution of the thesis to the cognitive science field all the above described elements are integrated in a memory-based architecture, emphasizing the important role played by the memory in the cognitive processes of living beings and giving a conceptual turn in the usual process-based approach.
Resumo:
The implantation of the new Architecture Degree and the important normative changes in the building sector imply the need to use new teaching methodologies that enhance skills and competences in order to response to the increasing requirements demanded by society to the future architect. The aim of this paper is to present, analyze and discuss the development of multidisciplinary workshops as a new teaching methodology used in several Construction subjects of the Architecture Degree in the University of Alicante. Workshops conceived with the aim to synthesize and complement the technical knowledge acquired by the students during the Degree and to enhance the skills and competencies necessary for the professional practice. With that purpose, we decided to experiment on current subjects of the degree during this academic year, by applying the requirements defined in the future Architecture Degree in a practical way, through workshops between different subjects, superposing the technical knowledge with the resolution of constructive problems in the development of an architectural project. Developing these workshops between subjects we can dissolve the traditional boundaries between different areas of the Degree. This multidisciplinary workshop methodology allows the use of all the global knowledge acquired by students during their studies and at the same time, it enhances students’ ability to communicate and discuss their ideas and solutions in public. It also increases their capacity of self-criticism, and it foments their ability to undertake learning strategies and research in an autonomous way. The used methodology is based on the development of a practical work common to several subjects of different knowledge areas within the "Technology Block" of the future Architecture Degree. Thus, students work approaching the problem in a global way discussing simultaneously with teachers from different areas. By using these new workshops we stimulate an interactive class versus a traditional lecture. Work is evaluated continuously, valuing the participative pupil´s attitude, working in groups in class time, reaching weekly objectives and stimulating the individual responsibility and positive interdependence of the pupil inside the working group. The exercises are designed to improve students’ ability to transmit their ideas and solutions in public, knowing how to discuss and defend their technical resolutions to peers and teachers (Peer Reviewing), their capacity for self-criticism and their capacity to undertake strategies and autonomous learning processes at the same time they develop a personal research into new technologies, systems and materials. Students have shown their majority preference for this teaching methodology by the multidisciplinary workshops offered in the last years, with very satisfactory academic results. In conclusion, it can be verified nowadays the viability of the introduction of new contents and new teaching methodologies necessary for the acquisition of the skills in the future Architecture Degree, through workshops between several subjects that have had a great acceptance in students and positive contrasted academic results.
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Individual learner, peer group and teacher roles in fostering autonomous language-learning behaviour
Resumo:
Julkaisumaa: Bulgaria
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
The following contribution pretends to cope with the demands of a globalised, post-modern environment through the design and implementation of an online international project where an SNS is used in order to join English as Second Language (ESL) students from different parts of the world. The design of the project appears around the implementation of the Bologna process in the Faculty of Education from the University of Girona where the basic prerequisite of all students to acquire English at the level B1 of the Common European Portfolio makes English a compulsory competence for communication among its higher education candidates in order to develop in the world. Together with the University of Girona, there is the International Educational and Resources Network (iEARN) which promotes the participation of schools around the world in online international projects
Resumo:
School has evolved from a place where knowledge is provided to a place where learners are helped to develop their professional and social skills. Consequently, education must evolve through big challenges in order to face the changes of society in the XXIst century
Resumo:
Aquesta tesi proposa l'ús d'un seguit de tècniques pel control a alt nivell d'un robot autònom i també per l'aprenentatge automàtic de comportaments. L'objectiu principal de la tesis fou el de dotar d'intel·ligència als robots autònoms que han d'acomplir unes missions determinades en entorns desconeguts i no estructurats. Una de les premisses tingudes en compte en tots els passos d'aquesta tesis va ser la selecció d'aquelles tècniques que poguessin ésser aplicades en temps real, i demostrar-ne el seu funcionament amb experiments reals. El camp d'aplicació de tots els experiments es la robòtica submarina. En una primera part, la tesis es centra en el disseny d'una arquitectura de control que ha de permetre l'assoliment d'una missió prèviament definida. En particular, la tesis proposa l'ús de les arquitectures de control basades en comportaments per a l'assoliment de cada una de les tasques que composen la totalitat de la missió. Una arquitectura d'aquest tipus està formada per un conjunt independent de comportaments, els quals representen diferents intencions del robot (ex.: "anar a una posició", "evitar obstacles",...). Es presenta una recerca bibliogràfica sobre aquest camp i alhora es mostren els resultats d'aplicar quatre de les arquitectures basades en comportaments més representatives a una tasca concreta. De l'anàlisi dels resultats se'n deriva que un dels factors que més influeixen en el rendiment d'aquestes arquitectures, és la metodologia emprada per coordinar les respostes dels comportaments. Per una banda, la coordinació competitiva és aquella en que només un dels comportaments controla el robot. Per altra banda, en la coordinació cooperativa el control del robot és realitza a partir d'una fusió de totes les respostes dels comportaments actius. La tesis, proposa un esquema híbrid d'arquitectura capaç de beneficiar-se dels principals avantatges d'ambdues metodologies. En una segona part, la tesis proposa la utilització de l'aprenentatge per reforç per aprendre l'estructura interna dels comportaments. Aquest tipus d'aprenentatge és adequat per entorns desconeguts i el procés d'aprenentatge es realitza al mateix temps que el robot està explorant l'entorn. La tesis presenta també un estat de l'art d'aquest camp, en el que es detallen els principals problemes que apareixen en utilitzar els algoritmes d'aprenentatge per reforç en aplicacions reals, com la robòtica. El problema de la generalització és un dels que més influeix i consisteix en permetre l'ús de variables continues sense augmentar substancialment el temps de convergència. Després de descriure breument les principals metodologies per generalitzar, la tesis proposa l'ús d'una xarxa neural combinada amb l'algoritme d'aprenentatge per reforç Q_learning. Aquesta combinació proporciona una gran capacitat de generalització i una molt bona disposició per aprendre en tasques de robòtica amb exigències de temps real. No obstant, les xarxes neurals són aproximadors de funcions no-locals, el que significa que en treballar amb un conjunt de dades no homogeni es produeix una interferència: aprendre en un subconjunt de l'espai significa desaprendre en la resta de l'espai. El problema de la interferència afecta de manera directa en robòtica, ja que l'exploració de l'espai es realitza sempre localment. L'algoritme proposat en la tesi té en compte aquest problema i manté una base de dades representativa de totes les zones explorades. Així doncs, totes les mostres de la base de dades s'utilitzen per actualitzar la xarxa neural, i per tant, l'aprenentatge és homogeni. Finalment, la tesi presenta els resultats obtinguts amb la arquitectura de control basada en comportaments i l'algoritme d'aprenentatge per reforç. Els experiments es realitzen amb el robot URIS, desenvolupat a la Universitat de Girona, i el comportament après és el seguiment d'un objecte mitjançant visió per computador. La tesi detalla tots els dispositius desenvolupats pels experiments així com les característiques del propi robot submarí. Els resultats obtinguts demostren la idoneïtat de les propostes en permetre l'aprenentatge del comportament en temps real. En un segon apartat de resultats es demostra la capacitat de generalització de l'algoritme d'aprenentatge mitjançant el "benchmark" del "cotxe i la muntanya". Els resultats obtinguts en aquest problema milloren els resultats d'altres metodologies, demostrant la millor capacitat de generalització de les xarxes neurals.