A behavior-based scheme using reinforcement learning for autonomous underwater vehicles


Autoria(s): Carreras Pérez, Marc; Yuh, Junku; Batlle i Grabulosa, Joan; Ridao Rodríguez, Pere
Data(s)

17/05/2010

Resumo

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Identificador

http://hdl.handle.net/10256/2169

Idioma(s)

eng

Publicador

IEEE

Direitos

Tots els drets reservats

Palavras-Chave #Algorismes computacionals #Aprenentatge per reforç #Intel·ligència artificial #Robots autònoms #Xarxes neuronals (Informàtica) #Vehicles submergibles #Artificial intelligence #Autonomous robots #Computer algorithms #Neural networks (Computer science) #Reinforcement learning #Submersibles
Tipo

info:eu-repo/semantics/article