A behavior-based scheme using reinforcement learning for autonomous underwater vehicles
Data(s) |
2005
|
---|---|
Resumo |
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs |
Formato |
application/pdf |
Identificador |
Carreras, M., Yuh, J., Batlle, J., i Ridao, P. (2005). A behavior-based scheme using reinforcement learning for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 30, 2, 416-427. Recuperat 05 maig 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1522520 0364-9059 |
Idioma(s) |
eng |
Publicador |
IEEE |
Relação |
Reproducció digital del document publicat a: http://dx.doi.org/10.1109/JOE.2004.835805 © Oceanic Engineering, 2005, vol. 30, p. 416-427 Articles publicats (D-ATC) |
Direitos |
Tots els drets reservats |
Palavras-Chave | #Algorismes computacionals #Aprenentatge per reforç #Intel·ligència artificial #Robots autònoms #Xarxes neuronals (Informàtica) #Vehicles submergibles #Artificial intelligence #Autonomous robots #Computer algorithms #Neural networks (Computer science) #Reinforcement learning #Submersibles |
Tipo |
info:eu-repo/semantics/article |