959 resultados para Zeros of orthogonal polynomials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the symmetric Gaussian and L-Gaussian quadrature rules associated with twin periodic recurrence relations with possible variations in the initial coefficient. We show that the weights of the associated Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 4. We also show that the weights of the associated L-Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 5. Special cases of these quadrature rules are given. Finally, an easy to implement procedure for the evaluation of the nodes is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associated with an ordered sequence of an even number 2N of positive real numbers is a birth and death process (BDP) on {0, 1, 2,..., N} having these real numbers as its birth and death rates. We generate another birth and death process from this BDP on {0, 1, 2,..., 2N}. This can be further iterated. We illustrate with an example from tan(kz). In BDP, the decay parameter, viz., the largest non-zero eigenvalue is important in the study of convergence to stationarity. In this article, the smallest eigenvalue is found to be useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivou-se comparar modelos de regressão aleatória com diferentes estruturas de variância residual, a fim de se buscar a melhor modelagem para a característica tamanho da leitegada ao nascer (TLN). Utilizaram-se 1.701 registros de TLN, que foram analisados por meio de modelo animal, unicaracterística, de regressão aleatória. As regressões fixa e aleatórias foram representadas por funções contínuas sobre a ordem de parto, ajustadas por polinômios ortogonais de Legendre de ordem 3. Para averiguar a melhor modelagem para a variância residual, considerou-se a heterogeneidade de variância por meio de 1 a 7 classes de variância residual. O modelo geral de análise incluiu grupo de contemporâneo como efeito fixo; os coeficientes de regressão fixa para modelar a trajetória média da população; os coeficientes de regressão aleatória do efeito genético aditivo-direto, do comum-de-leitegada e do de ambiente permanente de animal; e o efeito aleatório residual. O teste da razão de verossimilhança, o critério de informação de Akaike e o critério de informação bayesiano de Schwarz apontaram o modelo que considerou homogeneidade de variância como o que proporcionou melhor ajuste aos dados utilizados. As herdabilidades obtidas foram próximas a zero (0,002 a 0,006). O efeito de ambiente permanente foi crescente da 1ª (0,06) à 5ª (0,28) ordem, mas decrescente desse ponto até a 7ª ordem (0,18). O comum-de-leitegada apresentou valores baixos (0,01 a 0,02). A utilização de homogeneidade de variância residual foi mais adequada para modelar as variâncias associadas à característica tamanho da leitegada ao nascer nesse conjunto de dado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove that the set of equivalence classes of germs of real polynomials of degree less than or equal to k, with respect to K-bi-Lipschitz equivalence, is finite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modal and nonmodal linear properties of the Hasegawa-Wakatani system are examined. This linear model for plasma drift waves is nonnormal in the sense of not having a complete set of orthogonal eigenvectors. A consequence of nonnormality is that finite-time nonmodal growth rates can be larger than modal growth rates. In this system, the nonmodal time-dependent behavior depends strongly on the adiabatic parameter and the time scale of interest. For small values of the adiabatic parameter and short time scales, the nonmodal growth rates, wave number, and phase shifts (between the density and potential fluctuations) are time dependent and differ from those obtained by normal mode analysis. On a given time scale, when the adiabatic parameter is less than a critical value, the drift waves are dominated by nonmodal effects while for values of the adiabatic parameter greater than the critical value, the behavior is that given by normal mode analysis. The critical adiabatic parameter decreases with time and modal behavior eventually dominates. The nonmodal linear properties of the Hasegawa-Wakatani system may help to explain features of the full system previously attributed to nonlinearity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial p lie in the convex hull H of the zeros of p. It is proved that, actually, a subdomain of H contains the critical points of p. ©1998 American Mathematical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The celebrated Turân inequalities P 2 n(x)-P n-x(x)P n+1(x) ≥ 0, x ε[-1,1], n ≥ 1, where P n(x) denotes the Legendre polynomial of degree n, are extended to inequalities for sums of products of four classical orthogonal polynomials. The proof is based on an extension of the inequalities γ 2 n - γ n-1γ n+1 ≥ 0, n ≥ 1, which hold for the Maclaurin coefficients of the real entire function ψ in the Laguerre-Pölya class, ψ(x) = ∑ ∞ n=0 γ nx n / n!. ©1998 American Mathematical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider interpolatory quadrature rules with nodes and weights satisfying symmetric properties in terms of the division operator. Information concerning these quadrature rules is obtained using a transformation that exists between these rules and classical symmetric interpolatory quadrature rules. In particular, we study those interpolatory quadrature rules with two fixed nodes. We obtain specific examples of such quadrature rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extremal problem for the coefficients of sine polynomials, which are nonnegative in [0,π] , posed and discussed by Rogosinski and Szego is under consideration. An analog of the Fejér-Riesz representation of nonnegative general trigonometric and cosine polynomials is proved for nonnegative sine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szego are obtained explicitly. Associated cosine polynomials k n (θ) are constructed in such a way that { k n (θ) } are summability kernels. Thus, the L p , pointwise and almost everywhere convergence of the corresponding convolutions, is established. © 2002 Springer-Verlag New York Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let 0 < j < m ≤ n. Kolmogoroff type inequalities of the form ∥f(j)∥2 ≤ A∥f(m)∥ 2 + B∥f∥2 which hold for algebraic polynomials of degree n are established. Here the norm is defined by ∫ f2(x)dμ(x), where dμ(x) is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we characterize completely the positive constants A and B, for which the Landau weighted polynomial inequalities ∥f′∥ 2 ≤ A∥f″∥2 + B∥f∥ 2 hold. © Dynamic Publishers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.