Inversely symmetric interpolatory quadrature rules
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/05/2000
|
Resumo |
We consider interpolatory quadrature rules with nodes and weights satisfying symmetric properties in terms of the division operator. Information concerning these quadrature rules is obtained using a transformation that exists between these rules and classical symmetric interpolatory quadrature rules. In particular, we study those interpolatory quadrature rules with two fixed nodes. We obtain specific examples of such quadrature rules. |
Formato |
15-28 |
Identificador |
http://dx.doi.org/10.1023/A:1006403308900 Acta Applicandae Mathematicae, v. 61, n. 1-3, p. 15-28, 2000. 0167-8019 http://hdl.handle.net/11449/66143 10.1023/A:1006403308900 WOS:000088583400003 2-s2.0-0042223940 |
Idioma(s) |
eng |
Relação |
Acta Applicandae Mathematicae |
Direitos |
closedAccess |
Palavras-Chave | #Orthogonal Laurent polynomials #Orthogonal polynomials #Quadrature rules #Symmetric distributions |
Tipo |
info:eu-repo/semantics/article |