Inversely symmetric interpolatory quadrature rules


Autoria(s): De Andrade, E. X. L.; Bracciali, Cleonice Fátima; Sri Ranga, A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/05/2000

Resumo

We consider interpolatory quadrature rules with nodes and weights satisfying symmetric properties in terms of the division operator. Information concerning these quadrature rules is obtained using a transformation that exists between these rules and classical symmetric interpolatory quadrature rules. In particular, we study those interpolatory quadrature rules with two fixed nodes. We obtain specific examples of such quadrature rules.

Formato

15-28

Identificador

http://dx.doi.org/10.1023/A:1006403308900

Acta Applicandae Mathematicae, v. 61, n. 1-3, p. 15-28, 2000.

0167-8019

http://hdl.handle.net/11449/66143

10.1023/A:1006403308900

WOS:000088583400003

2-s2.0-0042223940

Idioma(s)

eng

Relação

Acta Applicandae Mathematicae

Direitos

closedAccess

Palavras-Chave #Orthogonal Laurent polynomials #Orthogonal polynomials #Quadrature rules #Symmetric distributions
Tipo

info:eu-repo/semantics/article