A refinement of the gauss-lucas theorem
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/12/1998
|
Resumo |
The classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial p lie in the convex hull H of the zeros of p. It is proved that, actually, a subdomain of H contains the critical points of p. ©1998 American Mathematical Society. |
Formato |
2065-2070 |
Identificador |
http://dx.doi.org/10.1090/S0002-9939-98-04381-0 Proceedings of the American Mathematical Society, v. 126, n. 7, p. 2065-2070, 1998. 0002-9939 http://hdl.handle.net/11449/65595 10.1090/S0002-9939-98-04381-0 WOS:000074694200025 2-s2.0-22044440822 2-s2.0-22044440822.pdf |
Idioma(s) |
eng |
Relação |
Proceedings of the American Mathematical Society |
Direitos |
openAccess |
Palavras-Chave | #Nontrivial critical point of a polynomial |
Tipo |
info:eu-repo/semantics/article |