A refinement of the gauss-lucas theorem


Autoria(s): Dimitrov, Dimitar K.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/12/1998

Resumo

The classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial p lie in the convex hull H of the zeros of p. It is proved that, actually, a subdomain of H contains the critical points of p. ©1998 American Mathematical Society.

Formato

2065-2070

Identificador

http://dx.doi.org/10.1090/S0002-9939-98-04381-0

Proceedings of the American Mathematical Society, v. 126, n. 7, p. 2065-2070, 1998.

0002-9939

http://hdl.handle.net/11449/65595

10.1090/S0002-9939-98-04381-0

WOS:000074694200025

2-s2.0-22044440822

2-s2.0-22044440822.pdf

Idioma(s)

eng

Relação

Proceedings of the American Mathematical Society

Direitos

openAccess

Palavras-Chave #Nontrivial critical point of a polynomial
Tipo

info:eu-repo/semantics/article