908 resultados para Photonic bandgap
Resumo:
For enhancing the output efficiency of GaN light-emitting diode(LED), we calculated the band structure of photonic crystal(PhC), and designed and fabricated several novel GaN LEDs with photonic crystal on Indium-Tin-Oxide(ITO), which as p-type transparent contact of GaN LED. In this fabricating process, we developed conventional techniques in order that these methods can be easily applied to industrial volume-production. And we have done some preliminary experiments and obtained some results.
Resumo:
Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.
Resumo:
We report on the design and fabrication of a photonic crystal (PC) channel drop filter based on an asymmetric silicon-on-insulator (SOI) slab. The filter is composed of two symmetric stick-shape micro-cavities between two single-line-defect (W1) waveguides in a triangular lattice, and the phase matching condition for the filter to improve the drop efficiency is satisfied by modifying the positions and radii of the air holes around the micro-cavities. A sample is then fabricated by using electron beam lithography (EBL) and inductively coupled plasma (ICP) etching processes. The measured 0 factor of the filter is about 1140, and the drop efficiency is estimated to be 73% +/- 5% by fitting the transmission spectrum.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides and coupled structure of PC waveguide and PC micro-cavity. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-holes single-line-defect waveguide. We fabricated these devices on a silicon-on-insulator substrate and characterized them using tunable laser source. We've obtained high-efficiency light propagation and broad flat spectrum response of photonic-crystal waveguides. A sharp attenuation at photonic crystal waveguide mode edge was observed for most structures. The edge of guided band is shifted about 31 nm with the 10 nm increase of lattice constant. Mode resonance was observed in coupled structure. Our experimental results indicate that the optical spectra of photonic crystal are very sensitive to structure parameters.
Resumo:
An ultra-compact silicon-on-insulator based photonic crystal corner mirror is designed and optimized. A sample is then successfully fabricated with extra losses 1.1 +/- 0.4dB for transverse-electronic (M) polarization for wavelength range of 1510-1630nm.
Resumo:
zhangdi于2010-03-09批量导入
Resumo:
The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.
Fabrication and characterization of two-dimensional photonic crystal on silicon by efficient methods
Resumo:
Two-dimensional photonic crystals working in near infrared region are fabricated into silicon-on-insulator wafer by 248-nm deep UV lithography. We present an efficient way to measure the photonic crystal waveguide's light transmission spectra at given polarization states.
Resumo:
We used Plane Wave Expansion Method and a Rapid Genetic Algorithm to design two-dimensional photonic crystals with a large absolute band gap. A filling fraction controlling operator and Fourier transform data storage mechanism had been integrated into the genetic operators to get desired photonic crystals effectively and efficiently. Starting from randomly generated photonic crystals, the proposed RGA evolved toward the best objectives and yielded a square lattice photonic crystal with the band gap (defined as the gap to mid-gap ratio) as large as 13.25%. Furthermore, the evolutionary objective was modified and resulted in a satisfactory PC for better application to slab system.
Resumo:
SOI (Silicon on Insulator) based photonic devices, including stimulated emission from Si diode, RCE (Resonant Cavity Enhanced) photodiode with quantum structure, MOS (Metal Oxide Semiconductor) optical modulator with high frequency, SOI optical matrix switch and wavelength tunable filter are reviewed in the paper. The emphasis will be played on our recent results of SOI-based thermo-optic waveguide matrix switch with low insertion loss and fast response. A folding re-arrangeable non-blocking 4x4 matrix switch with total internal reflection (TIR) mirrors and a first blocking 16 x 16 matrix were fabricated on SOI wafer. The extinction ratio and the crosstalk are better. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length and more bend and intersecting waveguides. The insertion losses are expected to decrease 2-3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.
Resumo:
In this paper, we focus on the dipole mode of the two-dimensional (2D) photonic crystal (PC) single point defect cavity (SPDC) lasers and we report the fabrication and characterization of 2D PC SPDC lasers with the structure of adjusted innermost air holes. The photonic band and cavity Q factors are simulated by means of plane wave expansion (PWE) and finite-difference time-domain (FDTD), respectively. In order to improve the optical confinement of the SPDC, the diameter of the innermost holes was adjusted. Different lasing performances are observed experimentally. The experimental results agree with the theoretical prediction very well. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Compositional distribution of the quantum well and barrier after quantum well intermixing for GaInP/AlGaInP system was theoretically analyzed on the basis of atom diffusion law. With the compositional distribution result, the valence subband structure of the intermixed quantum well was calculated on the basis of 6x6 Luttinger-Kohn Hamiltonian, including spin-orbit splitting effects. TO get more accurate results in the calculation, a full 6-band problem was solved without axial approximation, which had been widely used in the Luttinger-Kohn model to simplify the computational efforts, since there was a strong warping in the GaInP valence band. At last, the bandgap energy of the intermixed quantum well was obtained and the calculation result is of much importance in the analysis of quantum well intermixing experiments.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T07:40:23Z No. of bitstreams: 1 Reconfigurable Optical Add-Drop Multiplexer Based on Silicon Photonic Wire Waveguide.pdf: 416355 bytes, checksum: 5b80992194ba9fa818a011244cec6363 (MD5)
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:18:15Z No. of bitstreams: 1 Demonstration of high efficient tunable lasing with one photonic crystal W1 waveguide.pdf: 564778 bytes, checksum: 1eb1246461d4a3fcc99e870bda90f9b4 (MD5)
Resumo:
We demonstrate a novel oxide confined GaAs-based photonic crystal vertical cavity surface emitting laser (PC-VCSEL) operating at a wavelength of 850 nm based on coherent coupling. A ring-shaped light-emitting aperture is added to the conventional PC-VCSEL, and coherent coupling is achieved between the central defect aperture and the ring-shaped light-emitting aperture. Measurements show that under the continuous-wave (CW) injected current of 20 mA, a high power of 2 mW is obtained, and the side mode suppression ratio (SMSR) is larger than 20 dB. The average divergence angle is 4.2 degrees at the current level of 20 mA. Compared with the results ever reported, the divergence angle is reduced.