918 resultados para intramolecular bonding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure, mechanical properties and electronic structure of ground state BeH2 are calculated employing the first-principles methods based on the density functional theory. Our calculated structural parameters at equilibrium volume are well consistent with experimental results. Elastic constants, which well obey the mechanical stability criteria, are firstly theoretically acquired. The bulk modulus B, Shear modulus G, Young's modulus E, and Poisson's ratio upsilon are deduced from the elastic constants. The bonding nature in BeH2 is fully interpreted by combining characteristics in band structure, density of states, and charge distribution. The ionicity in the Be-H bond is mainly featured by charge transfer from Be 2s to H 1s atomic orbitals while its covalency is dominated by the hybridization of H 1s and Be 2p states. The Bader analysis of BeH2 and MgH2 are performed to describe the ionic/covalent character quantitatively and we find that about 1.61 (1.6) electrons transfer from each Be (Mg) atom to H atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a novel bonding method using silicate gel as the bonding medium was developed to fabricate an InGaAs narrow-band response resonant cavity enhanced photodetector on a silicon substrate. The bonding was performed at a low temperature of 350 degreesC without any special treatment on bonding surfaces and a Si-based narrow-band response InGaAs photodetector was successfully fabricated, with a quantum efficiency of 34.4% at the resonance wavelength of 1.54 mum, and a full-width at half-maximum of about 27 nm. The photodetector has a linear photoresponse up to 4-mW optical power under 1.5 V or higher reverse bias. The low temperature wafer bonding process demonstrates a great potential in device fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface micro-roughness, surface chemical properties, and surface wettability are three important aspects of wafer surfaces during a wafer cleaning process, which determine the bonding quality of ordinary direct wafer bonding. In this study, InP wafers are divided into four groups and treated by different chemical processes. Subsequently, the characteristics of the treated InP surfaces are carefully studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements. The optimal wafer treatment method for wafer bonding is determined by comparing the results of the processes as a whole. This optimization is later evaluated by a scanning electronic microscope (SEM), and the ridge waveguide 1.55 mu m Si-based InP/InGaAsP multi-quantum-well laser chips are also fabricated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of bonding-wire compensation on the capacitances of both the submount and the laser diode is demonstrated in this paper. The measured results show that the small-signal magnitude-frequency responses of the TO packaged laser and photodiode modules can be improved by properly choosing the length of the bonding wire. After packaging, the phase-frequency responses of the laser modules can also be significantly improved (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A SiGe/Si multiple-quantum-well resonant-cavity-enhanced (RCE) photodetector for 1.3 mum operation was fabricated using bonding reflector process. A full width at half maximum (FWHM) of 6 nm and a quantum efficiency of 4.2% at 1314 nm were obtained. Compared to our previously reported SiGe RCE photodetectors fabricated on separation-by-implanted-oxygen wafer, the mirrors in the device can be more easily fabricated and the device can be further optimized. The FWHM is expected to be less than 1 nm and the detector is fit for density wavelength division multiplexing applications. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We successfully used the metal mediated-wafer bonding technique in transferring the as-grown cubic GaN LED structure of Si substrate. The absorbing GaAs substrate was removed by using the chemical solutions of NH4OH : H2O2=1 : 10. SEM and PL results show that wafer bonding technique could transfer the cubic GaN epilayers uniformly to Si without affecting the physical and optical properties of epilayers. XRD result shows that there appeared new peaks related to AgGa2 and Ni4N diffraction, indicating that the metals used as adhesive and protective layers interacted with the p-GaN layer during the long annealing process. It is just the reaction that ensures the reliability of the integration of GaN with metal and minor contact resistance on the interface.