942 resultados para Cassava flour
Resumo:
The indigenous political scene in Brazil is undergoing transformations that need to be better analyzed by scholars in the field of the Social Sciences. The deficit in the policy of indigenous land demarcation emerges as the largest obstacle in the conquest of collective rights. Therefore, a study to analyze renewed strategies in the struggle for social rights, and their implications in local everyday life relations, is urgent. In this context, the aim of this research is to understand the current social dynamics of identity among the Tremembé people of Almofala, in the state of Ceará, Brazil, with a fieldwork conducted in the flour mill of the Casa de Farinha Comunitária project, in the Lameirão community. Specific aims are: a) to analyze the processes involved in the project in order to comprehend their meanings and appropriations as well as their everyday life and political uses; b) understand the strategies to fight for social benefits; c) analyze the local ethnic classifications grounding the construction of the Tremembé identity in Almofala. Methods deployed are ethnography of communities, used to apprehend the social production of networks of relationships, and a social cartography of practices. The realization of rights demanded by the indigenous populations in Brazil is intertwined with a process of social and legal legitimation their identity and cultural heritage. Such legitimation works as a safeguard mechanism of rights secured by the Constitution. Therefore, to own a “cultural heritage” is perceived as a “passport” to benefit from emerging rights. Amid this context, changes in the traditional processing of the cassava root, a productive practice shared locally by diverse social groups, is reified as cultural heritage by the Tremembé people of Almofala and their network of collaborators in the pursuit of accessing distinctive public policies. Furthermore, the research came across specific social arrangements of local subjects which unfolded internal struggles, enabling to understand the dynamics of the Tremembé of Almofala identity process.
Resumo:
Cassava is one of the major food crops in Nigeria, with multiple uses from human consumption to industrial applications. This study explores the potential of cassava in Nigerian agriculture based on a review of cassava development policies; performs a trend analysis of the cultivation area, production, productivity, and real price of cassava and other competing crops for the period 1961–2013; identifies the sources of growth in production; and examines the production constraints at the local level based on a survey of 315 farmers/processors and 105 marketers from Delta State. The results revealed that several policies and programmes were implemented to develop the cassava sector with mixed outcomes. Although cassava productivity grew at 1.5% per annum (p.a.) during the post-structural adjustment programme period (1993–2013), its real price declined at a rate of 3.5% p.a. The effect of yield is the main source of growth in production, contributing 76.4% of the total growth followed by the area effect (28.2%). The cassava sector is constrained by inadequate market infrastructure, processing facilities, and lack of information and unstable prices at the local level. The widespread diffusion of improved tropical manioc selection technologies and investments in market and marketing infrastructure, processing technologies, irrigation/water provision and information dissemination are recommended to enhance the potential of the cassava sector to support agricultural growth in Nigeria.
Resumo:
Fumigation with phosphine gas is the primary method of controlling stored grain pests. In Turkey, phosphine has been used extensively since the 1950's. Even though high levels of phosphine resistance have been detected in several key stored products pests across the world, it has never been studied in Turkey despite this long history of phosphine use. High-level phosphine resistance has been detected and genetically characterised previously in the rust red flour beetle, Tribolium castaneum in other countries. Since this pest is also a common problem in stored grain environment in Turkey, the current study was undertaken for the first time, to investigate the distribution and strength of phosphine resistance in T. castaneum. Four strains of T. castaneum were tested through bioassays for determining the weak and strong phosphine resistance phenotypes on the basis of the response of adults to discriminating phosphine concentrations of 0.03 mg/L and 0.25 mg/L, for 20 hour exposures respectively. Phenotype testing showed all strains exhibited some level of phosphine resistance with a maximum level of 196 fold. Sequencing and genetic testing of seven field-collected strains showed that all of them carried a strong resistance allele in at the rph2 locus similar to the one previously reported. Our results show that strong resistance to phosphine is common in Turkish strains of T. castaneum.
Resumo:
2009
Resumo:
The physical, chemical and pasting properties of the flour and isolated starches from six different bean cultivars (Phaseolus vulgaris L.) were investigated in order to obtain information for application in new products. The protein and total starch contents of the bean flours ranged from 17.72 to 20.27% and from 39.68 to 43.78%, respectively. The bean starches had low amounts of proteins, lipids and ash and showed an amylose content ranging between 45.32 and 51.11% and absolute density values between 1.55 and 1.78 g.cm?3. The bean starch granules were round to oval with a smooth surface. Results viscoamylographic profiles of the starches and flours showed the possibility of selecting cultivars for specific applications according to these characteristics.
Resumo:
2016
Resumo:
Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design.
Resumo:
2016
Resumo:
Este relato descreve a experiência realizada por meio de uma parceria entre o Projeto Rio Pardo, da Embrapa Cerrados e a Escola Politécnica/USP, visando inserir a questão do trabalho agrícola familiar nas ações desenvolvidas junto aos agricultores de três comunidades de Rio Pardo de Minas/MG, produtoras de frutos do cerrado, goma/farinha de mandioca e café sombreado. O objetivo foi levantar possíveis demandas ergonômicas existentes nestas unidades de produção, que estão implantando agroindústrias familiares para realizar o beneficiamento da produção. As demandas relacionam-se a problemas com a produção, a organização do trabalho e a saúde dos trabalhadores. Percebe-se a coexistência do saber tradicional, transmitido entre gerações, com a inovação em termos de maquinário e instalações. Há diversos arranjos produtivos presentes, fruto da criatividade e sabedoria aplicada dos agricultores. Estas inovações podem ser o embrião de projetos futuros de novos maquinários e arranjos produtivos. Trata-se de fazer comunicar dois saberes, dos projetistas e dos usuários, contribuindo para que estes últimos possam ser empoderados no papel de criadores de inovações, contribuindo para a incorporação de aspectos ergonômicos na evolução dos equipamentos e instalações. Abstract: This report describes the experience carried out through a partnership between Project ? Rio Pardo ?, Embrapa Cerrados/DF and the Polytechnic School of USP, in order to put the issue of family farm labor in the actions developed by farmers in three communities of Rio Pardo de Minas, north of Minas Gerais. The main products are fruits of the cerrado, cassava starch and manioc flour and shaded coffee. The initial goal was to raise possible these existing ergonomic demands of family farming units, which are in the process of implementation of family agri-industries to undertake the processing and beneficiation production. The ergonomic demands are related to production problems with the organization of work and the health of farm workers. In preliminary analyzes, it was possible to perceive the coexistence of traditional knowledge transmitted between generations, with innovation in terms of machinery and facilities. There are several productive arrangements, result of creativity and knowledge of farmers. These innovations, developed by who performs the work, may be the starting point for future designs of new machinery and productive arrangements. It could demonstrated the importance of communication between two knowledge, from the designers and from the users (farmers), contributing to the latter to be empowered in their role as creators of innovation and contributing to the incorporation of ergonomic aspects in the context of setting up their equipment.
Resumo:
2016
Resumo:
ABSTRACT: BACKGROUND: Cassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality. RESULTS: Among the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total ß-carotene, containing all-E-, 9-Z-, and 13-Z-ß-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no ?-carotene was observed, variable amounts of a ?-ring derived xanthophyll, lutein, was detected; with greater accumulation of ?-ring xanthophylls than of ß-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total ß-carotene accumulation. CONCLUSIONS: Among the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low LYCb transcript abundance, whereas landrace Cas64 (intense yellow storage root) had decreased HYb transcript abundance. These results may explain the increased amounts of lycopene and total ß-carotene observed in landraces Cas51 and Cas64, respectively. Overall, total carotenoid content in cassava storage root of color class representatives were associated with spatial patterns of secondary growth, color, and abundance of transcripts linked to plastid division. Finally, a partial carotenoid biosynthesis pathway is proposed.