947 resultados para Average temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated stable self-starting passive mode locking in a diode-end-pumped Nd:Gd-0.8-Y0.5VO4 laser by using an In0.25Ga0.75As absorber grown at low temperature (LT In0.25Ga0.75As absorber). An In0.25Ga0.75As single-quantum-well absorber, which was grown directly on the GaAs buffer by use of the metal-organic chemical-vapor deposition technique, acts simultaneously as a passive mode-locking device and as an output coupler. Continuous-wave mode-locked pulses were obtained at 1063.5 nm. We achieved a pulse duration of 2.6 ps and an average output power of 2.15 W at a repetition rate of 96.4 MHz. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaAs absorber was grown at low temperature (550degreesC) by metal organic chemical vapour deposition (MOCVD) and was used as an output coupler with which we realized Q-switching modelocked Yb3+-doped fibre laser. The shortest period of the envelope of the Q-switched modelocking is about 3mus. The modelocking threshold is 4.27W and the highest average output pulse power is 290 mW. The modelocking frequency is 12 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a low temperature grown GaAs wafer as an intracavity saturable absorber, a temporal envelope duration of 11 ns of Q- switched and mode- locked ( QML) 1064 nm operation was achieved in a very simple compact plane- concave cavity Nd: YVO4 laser, it was so short that the pulses can be used as Q- switching pulses. The maximal average output power is 808 mW with the repetition rate of 25 kHz, and the corresponding peak power and energy of a single Q- switched pulse was 2.94 kW and 32.3 mu J, respectively. The mode- locked pulse trains inside the Q- switched pulse envelope had a repetition rate of 800 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the operation of a bidirectional picosecond pulsed ring Nd:YVO4 laser based on a low-temperature-grown semiconductor saturable absorber mirror. Except for the laser crystal, the six-mirror ring laser cavity has no intra-cavity elements such as focusing lens or mirror. The bidirectional mode locked pluses are obtained at the repetition rate of 117.5 MHz, pulse duration of 81 ps, power of 2 x 200 mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A passively Q-switched and mode-locked diode-pumped Nd:GdVO4 laser was demonstrated using a low-temperature-grown GaAs wafer (LT-GaAs) as an intracavity saturable absorber. The maximal Q-switched mode-locked average output power was 750 mW with the Q-switched envelop having a repetition rate of 167 kHz. The mode-locked pulse trains inside the Q-switched pulse envelope had a repetition rate of similar to 790 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low temperature GaAs (LT-GaAs) was successfully grown at the temperature of 550 degrees C by metal organic vapor phase epitaxy on a semi-insular GaAs substrate. With such an absorber as well as an output coupler we obtain Q-switched mode-locked (QML) 1064 nm Nd:GdVO4 laser pumped by diode laser with high repetition rate, formed with a simple flat-flat cavity. The repetition rate of the Q-switched envelope increased from 100 to 660 kHz as the pump power increased from 2.28 to 7.29 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of similar to 1.36 GHz. A maximum average output power of 953 mW was obtained. The dependence of the operational parameters on the pump power was also investigated experimentally. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel 800nm Bragg mirror type of semiconductor saturable absorption mirror with low temperature method and surface state method combined absorber is presented.With which passive Kerr lens mode locking of Ti∶Al2O3 laser pumped by argon ion laser is realized,which produces pulses as short as 40fs.The spectrum bandwidth is 56nm,which means that it can support the modelocking of 20fs.The pulse frequency is 97.5MHz;average output power is 300mW at the pump power of 4.45W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependences of the light output of CsI(Tl) crystal grown at IMP and of the gain of the Hamamatsu S8664-1010 avalanche photodiode (APD) have been investigated systematically. The light output of the CsI(Tl) crystal increases with temperature by 0.67%/degrees C in the region from -2 degrees C to 8 degrees C, and by 0.33%/degrees C in the region from 8 degrees C to 25 degrees C, while the gain of the tested APD decreases by -3.68%/degrees C (working voltage 400V) on average in the room temperature range. The best energy resolution 5.1% of the CsI(Tl) with APD was obtained for the 662keV gamma ray from Cs-137 radiation source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon supported Pt-Ru (Pt-Ru/C-T) catalyst can be prepared by a chemical reduction method in an aqueous solution with tetrahydrofuran (THF) at room temperature. The Pt-Ru particles possess high alloying, small average size and a low relative crystallinity. The electrocatalytic activity of the prepared Pt-Ru/C catalyst for methanol oxidation is much higher than that of commercial Pt-Ru/C (Pt-Ru/C-E) catalysts which have a similar average size and relative crystallinity, but the alloying extent is much lower than that in our Pt-Ru/C-T catalyst. The results illustrate that the alloying extent of Pt and Ru in the Pt-Ru/C catalyst plays an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for methanol oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical bond parameters, that is ionicities and average energy gaps, for all types of chemical bonds in YBa2Cu3O6+delta have been investigated with variation of oxygen content delta (delta = 0.0, 0.35, 0.45, 0.58, 0.64, 0.73, 0.78, 0.81, 0.95, 1.00). The theory used is the complex crystal chemical bond theory, which is the development of P-V-L theory. The two plateaus near 90 K and 60 K in superconducting transition temperatures, and the disappearance of superconductivity with the change of oxygen content, were reasonably explained by chemical bond parameters. The results also showed that the Cu-O chains play a vital role in the transition from non-superconductors to superconductors, and the highest transition temperature occurred when the plane-chain reached a coupling state. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.