974 resultados para POLYCRYSTALLINE SILICON FILMS
Resumo:
Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.
Resumo:
Two strong luminescence bands were observed from a-SiOx:H in the spectral range of 550-900 nm at room temperature. One is a main broad peak which blueshifts with oxygen content and the other is a shoulder fixed at about 835 nm. In conjunction with TR and micro-Raman spectra, we have proposed that the main band may originate from the amorphous silicon grains embedded in SiOx network, while the shoulder might be due to some defects induced by excess-silicon in these films. (C) 1997 Elsevier Science Ltd.
Resumo:
Chemically vapour deposited silicon on sapphire (SOS) films 0.25 mu m thick were implanted with Si-28(+) and recrystallized in solid phase by furnace annealing (FA) and IR rapid thermal annealing (RTA) in our laboratory. An improvement in crystalline quality can be obtained using both annealing procedures. After FA, it is hard to retain the intrinsic high resistivity value(10(4)-10(5) Ohm cm) observed in as-grown SOS films, so the improvement process cannot be put to practical use effectively. However, it is demonstrated that by properly adjusting the implantation and RTA conditions, significant improvements in both film quality and film autodoping can be accomplished. This work describes a modified double solid phase epitaxy process in which the intrinsic high resistivities of the as grown SOS films are retained. The mechanism of suppression of Al autodoping is discussed.
Resumo:
Er-doped silicon-rich silicon nitride (SRN) films were deposited on silicon substrate by an RF magnetron reaction sputtering system. After high temperature annealing, the films show intense photoluminescence in both the visible and infrared regions. Besides broad-band luminescence centered at 780 nm which originates from silicon nanocrystals, resolved peaks due to transitions from all high energy levels up to ~2H_(11/2) to the ground state of Er~(3+) are observed. Raman spectra and HRTEM measurements have been performed to investigate the structure of the films, and possible excitation processes are discussed.
Resumo:
Heteroepitaxial growth of 3C-SiC on patterned Si substrates by low pressure chemical vapor deposition (LPCVD) has been investigated to improve the crystal quality of 3C-SiC films. Si substrates were patterned with parallel lines, 1 to 10μm wide and spaced 1 to 10μm apart, which was carried out by photolithography and reactive ion etching. Growth behavior on the patterned substrates was systematically studied by scanning electron microscopy (SEM). An air gap structure and a spherical shape were formed on the patterned Si substrates with different dimensions. The air gap formed after coalescence reduced the stress in the 3C-SiC films, solving the wafer warp and making it possible to grow thicker films. XRD patterns indicated that the films grown on the maskless patterned Si substrates were mainly composed of crystal planes with (111) orientation.
Resumo:
Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.
Resumo:
One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.
Resumo:
The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.
Resumo:
The organic films of vanadyl-phthalocyanine (VOPc) compounds showed weak epitaxy growth (WEG) behavior on thin ordered para-sexiphenyl (p-6P) layer with high substrate temperature. The WEG of VOPc molecules standing up on the p-6P layer leaded to high in-plane orientation and their layer-by-layer growth behavior. In consequence, high quality VOPc films were obtained, which were consisted of lamellar crystals. Organic field-effect transistors with VOPc/p-6P films as active layers realized high mobility of above 1 cm(2)/V s. This result indicated that nonplanar compounds can obtain a device performance better than planar compounds, therefore, it may provide a rule to find disklike organic semiconductor materials.
Resumo:
Electrodeposition of CuInSe2 was investigated in acidic solutions containing Cu2+, In3+ and HSeO2+ ions. The electrodeposition condition was optimized with the aim of obtaining uniform thin films on titanium substrate. The mechanism of the electrodeposition process is discussed. Structure analysis of the deposited film shows a typical polycrystalline chalcopyrite structure, good crystallinity and homogeneous dispersion. The photoelectrochemical cells made of these kinds of deposited films in polysulfide redox solution give distinct photoresponse.
Resumo:
This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.
Resumo:
A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.