921 resultados para Weihenstephan, Ger. Benedictine monastery.
Resumo:
Phylogenetic studies of cyanobacterial lichens Lichens are symbiotic assemblages between fungi (mycobiont) and green algae (phycobiont) or/and cyanobacteria (cyanobiont). Fossil records show that lichen-like symbioses occurred already 600 million years ago. Lichen symbiosis has since then become an important life strategy for the Fungi, particularly for species in the phylum Ascomycota as approximately 98% of the lichenized fungal species are ascomycetes. The taxonomy of lichen associations is based on the mycobiont. We reconstructed, using DNA sequence data, hypotheses of phylogenetic relationships of lichen-forming fungi that include species associated with cyanobacteria. These hypotheses of phylogeny should form the basis for the taxonomy. They also allowed studies of the origin and the evolution of specific symbioses. Genetic diversity and phylogenetic relationships of symbiotic cyanobionts were also studied in order to examine selectivity of cyanobionts and mycobionts as well as possible co-evolution between partners involved in lichen associations. The suggested circumscription of the family Stereocaulaceae to include Stereocaulon and Lepraria is supported. The recently described crustose Stereocaulon species seem to be correctly placed in the genus, although Stereocaulon traditionally included only fruticose species. The monospecific crustose genus Muhria is also shown to be best placed in Stereocaulon. Family Lobariaceae as currently delimited is monophyletic. Within Lobariaceae genus Sticta including Dendriscocaulon dendroides form a monophyletic group while the genera Lobaria and Pseudocyphellaria are non-monophyletic. A new classification of Lobariaceae is obviously needed. Further studies are however required before a final proposal for a new classification can be made. Our results show that the cyanobacterial symbiotic state has been gained repeatedly in the Ascomycota while losses of symbiotic cyanobacteria appear to be rare. The symbiosis with green algae is confirmed to have been gained repeatedly in Ascomycota but also repeatedly lost. Cyanobacterial symbioses therefore seem to be more stable than green algal associations. Cyanobacteria are perhaps more beneficial for the lichen fungi and therefore maintained. The results indicate a dynamic association of the lichen symbiosis. This evolutionary instability will perhaps be important for the lichen fungi as the utilization of options will perhaps enable lichens to colonize new substrates and survive environmental changes. Some cyanobacterial lichen genera seem to be highly selective towards the cyanobiont while others form symbioses with a broad spectrum of cyanobacteria. No evidence of co-evolution between fungi and cyanobacteria in cyanolichens could be demonstrated.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.
Resumo:
The actin cytoskeleton is essential for a large variety of cell biological processes. Actin exists in either a monomeric or a filamentous form, and it is very important for many cellular functions that the local balance between these two actin populations is properly regulated. A large number of proteins participate in the regulation of actin dynamics in the cell, and twinfilin, one of the proteins examined in this thesis, belongs to this category. The second level of regulation involves proteins that crosslink or bundle actin filaments, thereby providing the cell with a certain shape. α-Actinin, the second protein studied, mainly acts as an actin crosslinking protein. Both proteins are conserved in organisms ranging from yeast to mammals. In this thesis, the roles of twinfilin and α-actinin in development were examined using Drosophila melanogaster as a model organism. Twinfilin is an actin monomer binding protein that is structurally related to cofilin. In vitro, twinfilin reduces actin polymerisation by sequestering actin monomers. The Drosophila twinfilin (twf) gene was identified and found to encode a protein functionally similar to yeast and mammalian twinfilins. A strong hypomorphic twf mutation was identified, and flies homozygous for this allele were viable and fertile. The adult twf mutant flies displayed reduced viability, a rough eye phenotype and severely malformed bristles. The shape of the adult bristle is determined by the actin bundles that are regularly spaced around the perimeter of the developing pupal bristles. Examination of the twf pupal bristles revealed an increased level of filamentous actin, which in turn resulted in splitting and displacement of the actin bundles. The bristle defect was rescued by twf overexpression in developing bristles. The Twinfilin protein was localised at sites of actin filament assembly, where it was required to limit actin polymerisation. A genetic interaction between twinfilin and twinstar (the gene encoding Cofilin) was detected, consistent with the model predicting that both proteins act to limit the amount of filamentous actin. α-Actinin has been implicated in several diverse cell biological processes. In Drosophila, the only function for α-actinin yet known is in the organisation of the muscle sarcomere. Muscle and non-muscle cells utilise different α-actinin isoforms, which in Drosophila are produced by alternative splicing of a single gene. In this work, novel α-actinin deletion alleles, including ActnΔ233, were generated, which specifically disrupted the transcript encoding the non-muscle α-actinin isoform. Nevertheless, ActnΔ233 homozygous mutant flies were viable and fertile with no obvious defects. By comparing α-actinin protein distribution in wild type and ActnΔ233 mutant animals, it could be concluded that non-muscle α-actinin is the only isoform expressed in young embryos, in the embryonic central nervous system and in various actin-rich structures of the ovarian germline cells. In the ActnΔ233 mutant, α-actinin was detected not only in muscle tissue, but also in embryonic epidermal cells and in certain follicle cell populations in the ovaries. The population of α-actinin protein present in non-muscle cells of the ActnΔ233 mutant is referred to as FC-α-actinin (Follicle Cell). The follicular epithelium in the Drosophila ovary is a well characterised model system for studies on patterning and morphogenesis. Therefore, α-actinin expression, regulation and function in this tissue were further analysed. Examination of the α-actinin localisation pattern revealed that the basal actin fibres of the main body follicle cells underwent an organised remodelling during the final stages of oogenesis. This involved the assembly of a transient adhesion site in the posterior of the cell, in which α-actinin and Enabled (Ena) accumulated. Follicle cells genetically manipulated to lack all α-actinin isoforms failed to remodel their cytoskeleton and translocate Ena to the posterior of the cell, while the actin fibres as such were not affected. Neither was epithelial morphogenesis disrupted. The reorganisation of the basal actin cytoskeleton was also disturbed following ectopic expression of Decapentaplegic (Dpp) or as a result of a heat shock. At late oogenesis, the main body follicle cells express both non-muscle α-actinin and FC-α-actinin, while the dorsal anterior follicle cells express only non-muscle α-actinin. The dorsal anterior cells are patterned by the Dpp and Epidermal growth factor receptor (EGFR) signalling pathways, and they will ultimately secrete the dorsal appendages of the egg. Experiments involving ectopic activation of EGFR and Dpp signalling showed that FC-α-actinin is negatively regulated by combined EGFR and Dpp signalling. Ubiquitous overexpression of the adult muscle-specific α-actinin isoform induced the formation of aberrant actin bundles in migrating follicle cells that did not normally express FC-α-actinin, provided that the EGFR signalling pathway was activated in the cells. Taken together, this work contributes new data to our knowledge of α-actinin function and regulation in Drosophila. The cytoskeletal remodelling shown to depend on α-actinin function provides the first evidence that α-actinin has a role in the organisation of the cytoskeleton in a non-muscle tissue. Furthermore, the cytoskeletal remodelling constitutes a previously undescribed morphogenetic event, which may provide us with a model system for in vivo studies on adhesion dynamics in Drosophila.
Resumo:
Double-stranded RNA (dsRNA) viruses encode only a single protein species that contains RNA-dependent RNA polymerase (RdRP) motifs. This protein is a central component in the life cycle of a dsRNA virus, carrying out both RNA transcription and replication. The architecture of viral RdRPs resembles that of a 'cupped right hand' with fingers, palm and thumb domains. Those applying de novo initiation have additional structural features, including a flexible C-terminal domain that constitutes the priming platform. Moreover, viral RdRPs must be able to interact with the incoming 3'-terminus of the template and position it so that a productive binary complex is formed. Bacteriophage phi6 of the Cystoviridae family is to date one of the best studied dsRNA viruses. The purified recombinant phi6 RdRP is highly active in vitro and possesses both RNA replication and transcription activities. The extensive biochemical observations and the atomic level crystal structure of the phi6 RdRP provides an excellent platform for in-depth studies of RNA replication in vitro. In this thesis, targeted structure-based mutagenesis, enzymatic assays and molecular mapping of phi6 RdRP and its RNA were used to elucidate the formation of productive RNA-polymerase binary complexes. The positively charged rim of the template tunnel was shown to have a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. This work demonstrated that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi6 RdRP can be greatly enhanced. Furthermore, proteolyzed phi6 RdRPs that possess a nick in the polypeptide chain at the hinge region, which is part of the extended loop, were better suited for catalysis at higher temperatures whilst favouring back-primed initiation. The clipped C-terminus remains associated with the main body of the polymerase and the hinge region, although structurally disordered, is involved in the control of C-terminal domain displacement. The accumulated knowhow on bacteriophage phi6 was utilized in the development of two technologies for the production of dsRNA: (i) an in vitro system that combines the T7 RNA polymerase and the phi6 RdRP to generate dsRNA molecules of practically unlimited length, and (ii) an in vivo RNA replication system based on restricted infection with phi6 polymerase complexes in bacterial cells to produce virtually unlimited amounts of dsRNA. The pools of small interfering RNAs derived from dsRNA produced by these systems were validated and shown to efficiently decrease the expression of both exogenous and endogenous targets.
Resumo:
Esophageal atresia (EA), a common congenital anomaly comprising interrupted esophagus with or without a tracheoesophageal fistula (TEF), affects one in 2840 newborns. Over half have associated anomalies. After EA repair in infancy, gastroesophageal reflux (GER) and esophageal dysmotility and respiratory problems are common. As there exist no previous population-based long-term follow-up-studies on EA, its long-term sequelae are unclear. The aims of this study were to assess the cancer incidence (I), esophageal morbidity and function (II), respiratory morbidity (III), and the spinal defects (IV) in adults with repaired EA. All patients treated for EA at the Hospital for Children and Adolescents, University of Helsinki, from 1947 to 1985 were identified, and those alive with their native esophagus were contacted, and the first hundred who replied made up the study group. The patients were interviewed, they filled in symptom questionnaires, and they underwent esophageal endoscopy and manometry, pulmonary function tests, and a full orthopedic evaluation was performed with radiographs of the spine. The questionnaire was also sent by mail to adults with repaired EA not attending the clinical study, and to 287 general population-derived controls matched for age, gender, and municipality of residence. Incidence of cancer among the study population was evaluated from the population-based countrywide cancer registry. 169 (72%) adults with repaired EA replied; 101 (42%) (58 male) participated in the clinical studies at a median age of 36 years (range, 22-56). Symptomatic GER occurred in 34% and dysphagia in 85% of the patients and in 8% and 2% of the controls (P<0.001 for both). The main endoscopic findings included hiatal hernia (28%), Barrett´s esophagus (11%), esophagitis (8%), and stenotic anastomosis (8%). Histology revealed esophagitis in 25 individuals, and epithelial metaplasia in another 21. At immunohistochemistry, CDX2-positive columnar epithelial metaplasia was present in all 21 individuals, and 6 of these also demonstrated goblet cells and MUC2 positivity. In all histological groups, GER and dysphagia were equally common (P=ns). Esophageal manometry demonstrated non-propagating peristalsis in most of the patients, and low ineffective pressure of the distal esophageal body in all. The changes were significantly worse in those with epithelial metaplasia (P≤0.022). Anastomotic complications (OR 8.6-24, 95%CI 1.7-260, P=0.011-0.008), age (OR 20, 95%CI 1.3-310, P=0.034), low distal esophageal body pressure (OR 2.6, 95%CI 0.7-10, P=0.002), and defective esophageal peristalsis (OR 2.2, 95%CI 0.4-11, P=0.014) all predicted development of epithelial metaplasia. Despite the high incidence of esophageal metaplasia, none of the EA patients had suffered esophageal cancer, according to the Finnish Cancer Registry. Although three had had cancer (SIR, 1.0; 95% CI, 0.20-2.8). The overall cancer incidence among adults with repaired EA did not differ from that of the general Finnish population. Current respiratory symptoms occurred in 11% of the patients and 2% of the controls (P<0.001). Of the patients, 16%, and 6% of the controls had doctor-diagnosed asthma (P<0.001). A total of 56% and 70% of the patients and 20% and 50% of the controls had a history of pneumonia and of bronchitis (P<0.001 for both). Respiratory-related impaired quality of life was observable in 11% of the patients in contrast to 6% of the controls (P<0.001). PFT revealed obstruction in 21 of the patients, restriction in 21, and both in 36. A total of 41 had bronchial hyper-responsiveness (BHR) in HCT, and 15 others had an asthma-like response. Thoracotomy-induced rib fusion (OR 3.4, 95%CI 1.3-8.7, P=0.01) and GER-associated epithelial metaplasia in adulthood (OR 3.0, 95%CI 1.0-8.9, P=0.05) were the most significant risk factors for restrictive ventilatory defect. Vertebral anomalies were evident in 45 patients, predominating in the cervical spine in 38. The most significant risk factor for the occurrence of vertebral anomalies was any additional anomaly (OR 27, 95%C I8-100). Scoliosis (over 10 degrees) was observable in 56 patients, over 20 degrees in 11, and over 45 degrees in one. In the EA patients, risk for scoliosis over 10 degrees was 13-fold (OR 13, 95%CI 8.3-21) and over 20 degrees, 38-fold (OR 38, 95%CI 14-106) when compared to that of the general population. Thoracotomy-induced rib fusion (OR 3.6, 95%CI 0.7-19) and other associated anomalies (OR 2.1, 95%CI 0.9-2.9) were the strongest predictive factors for scoliosis. Significant esophageal morbidity associated with EA extends into adulthood. No association existed between the esophageal symptoms and histological findings. Surgical complications, increasing age, and impaired esophageal motility predicted development of epithelial metaplasia after repair of EA. According to our data, the risk for esophageal cancer is less than 500-fold that of the general population. However, the overall cancer incidence among adults with repaired EA did not differ from that of the general population. Adults with repaired EA have had significantly more respiratory symptoms and infections, as well as more asthma, and allergies than does the general population. Thoracotomy-induced rib fusion and GER-associated columnar epithelial metaplasia were the most significant risk factors for the restrictive ventilatory defect that occurred in over half the patients. Over half the patients with repaired EA are likely to develop scoliosis. Risk for scoliosis is 13-fold after repair of EA in relation to that of the general population. Nearly half the patients had vertebral anomalies. Most of these deformities were diagnosed neither in infancy nor during growth. The natural history of spinal deformities seems, however, rather benign, with spinal surgery rarely indicated.
Resumo:
Exposure to water-damaged buildings and the associated health problems have evoked concern and created confusion during the past 20 years. Individuals exposed to moisture problem buildings report adverse health effects such as non-specific respiratory symptoms. Microbes, especially fungi, growing on the damp material have been considered as potential sources of the health problems encountered in these buildings. Fungi and their airborne fungal spores contain allergens and secondary metabolites which may trigger allergic as well as inflammatory types of responses in the eyes and airways. Although epidemiological studies have revealed an association between damp buildings and health problems, no direct cause-and-effect relationship has been established. Further knowledge is needed about the epidemiology and the mechanisms leading to the symptoms associated with exposure to fungi. Two different approaches have been used in this thesis in order to investigate the diverse health effects associated with exposure to moulds. In the first part, sensitization to moulds was evaluated and potential cross-reactivity studied in patients attending a hospital for suspected allergy. In the second part, one typical mould known to be found in water-damaged buildings and to produce toxic secondary metabolites was used to study the airway responses in an experimental model. Exposure studies were performed on both naive and allergen sensitized mice. The first part of the study showed that mould allergy is rare and highly dependent on the atopic status of the examined individual. The prevalence of sensitization was 2.7% to Cladosporium herbarum and 2.8% to Alternaria alternata in patients, the majority of whom were atopic subjects. Some of the patients sensitized to mould suffered from atopic eczema. Frequently the patients were observed to possess specific serum IgE antibodies to a yeast present in the normal skin flora, Pityrosporum ovale. In some of these patients, the IgE binding was partly found to be due to binding to shared glycoproteins in the mould and yeast allergen extracts. The second part of the study revealed that exposure to Stachybotrys chartarum spores induced an airway inflammation in the lungs of mice. The inflammation was characterized by an influx of inflammatory cells, mainly neutrophils and lymphocytes, into the lungs but with almost no differences in airway responses seen between the satratoxin producing and non-satratoxin producing strain. On the other hand, when mice were exposed to S. chartarum and sensitized/challenged with ovalbumin the extent of the inflammation was markedly enhanced. A synergistic increase in the numbers of inflammatory cells was seen in BAL and severe inflammation was observed in the histological lung sections. In conclusion, the results in this thesis imply that exposure to moulds in water damaged buildings may trigger health effects in susceptible individuals. The symptoms can rarely be explained by IgE mediated allergy to moulds. Other non-allergic mechanisms seem to be involved. Stachybotrys chartarum is one of the moulds potentially responsible for health problems. In this thesis, new reaction models for the airway inflammation induced by S. chartarum have been found using experimental approaches. The immunological status played an important role in the airway inflammation, enhancing the effects of mould exposure. The results imply that sensitized individuals may be more susceptible to exposure to moulds than non-sensitized individuals.
Resumo:
Background. Cardiovascular disease (CVD) remains the most serious threat to life and health in industrialized countries. Atherosclerosis is the main underlying pathology associated with CVD, in particular coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease. Risk factors play an important role in initiating and accelerating the complex process of atherosclerosis. Most studies of risk factors have focused on the presence or absence of clinically defined CVD. Less is known about the determinants of the severity and extent of atherosclerosis in symptomatic patients. Aims. To clarify the association between coronary and carotid artery atherosclerosis, and to study the determinants associated with these abnormalities with special regard to novel cardiovascular risk factors. Subjects and methods. Quantitative coronary angiography (QCA) and B-mode ultrasound were used to assess coronary and carotid artery atherosclerosis in 108 patients with clinically suspected CAD referred for elective coronary angiography. To evaluate anatomic severity and extent of CAD, several QCA parameters were incorporated into indexes. These measurements reflected CAD severity, extent, and overall atheroma burden and were calculated for the entire coronary tree and separately for different coronary segments (i.e., left main, proximal, mid, and distal segments). Maximum and mean intima-media thickness (IMT) values of carotid arteries were measured and expressed as mean aggregate values. Furthermore, the study design included extensive fasting blood samples, oral glucose tolerance test, and an oral fat-load test to be performed in each participant. Results. Maximum and mean IMT values were significantly correlated with CAD severity, extent, and atheroma burden. There was heterogeneity in associations between IMT and CAD indexes according to anatomical location of CAD. Maximum and mean IMT values, respectively, were correlated with QCA indexes for mid and distal segments but not with the proximal segments of coronary vessels. The values of paraoxonase-1 (PON1) activity and concentration, respectively, were lower in subjects with significant CAD and there was a significant relationship between PON1 activity and concentration and coronary atherosclerosis assessed by QCA. PON1 activity was a significant determinant of severity of CAD independently of HDL cholesterol. Neither PON1 activity nor concentration was associated with carotid IMT. The concentration of triglycerides (TGs), triglyceride-rich lipoproteins (TRLs), oxidized LDL (oxLDL), and the cholesterol content of remnant lipoprotein particle (RLP-C) were significantly increased at 6 hours after intake of an oral fatty meal as compared with fasting values. The mean peak size of LDL remained unchanged 6 hours after the test meal. The correlations between total TGs, TRLs, and RLP-C in fasting and postprandial state were highly significant. RLP-C correlated with oxLDL both in fasting and in fed state and inversely with LDL size. In multivariate analysis oxLDL was a determinant of severity and extent of CAD. Neither total TGs, TRLs, oxLDL, nor LDL size were linked to carotid atherosclerosis. Insulin resistance (IR) was associated with an increased severity and extent of coronary atherosclerosis and seemed to be a stronger predictor of coronary atherosclerosis in the distal parts of the coronary tree than in the proximal and mid parts. In the multivariate analysis IR was a significant predictor of the severity of CAD. IR did not correlate with carotid IMT. Maximum and mean carotid IMT were higher in patients with the apoE4 phenotype compared with subjects with the apoE3 phenotype. Likewise, patients with the apoE4 phenotype had a more severe and extensive CAD than individuals with the apoE3 phenotype. Conclusions. 1) There is an association between carotid IMT and the severity and extent of CAD. Carotid IMT seems to be a weaker predictor of coronary atherosclerosis in the proximal parts of the coronary tree than in the mid and distal parts. 2) PON1 activity has an important role in the pathogenesis of coronary atherosclerosis. More importantly, the study illustrates how the protective role of HDL could be modulated by its components such that equivalent serum concentrations of HDL cholesterol may not equate with an equivalent, potential protective capacity. 3) RLP-C in the fasting state is a good marker of postprandial TRLs. Circulating oxLDL increases in CAD patients postprandially. The highly significant positive correlation between postprandial TRLs and postprandial oxLDL suggests that the postprandial state creates oxidative stress. Our findings emphasize the fundamental role of LDL oxidation in the development of atherosclerosis even after inclusion of conventional CAD risk factors. 4) Disturbances in glucose metabolism are crucial in the pathogenesis of coronary atherosclerosis. In fact, subjects with IR are comparable with diabetic subjects in terms of severity and extent of CAD. 5) ApoE polymorphism is involved in the susceptibility to both carotid and coronary atherosclerosis.
Resumo:
The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.
Resumo:
Klinefelter syndrome (KS) is the most frequent karyotype disorder of male reproductive function. Since its original clinical description in 1942 and the identification of its chromosomal basis 47,XXY in 1959, the typical KS phenotype has become well recognized, but the mechanisms behind the testicular degeneration process have remained unrevealed. This prospective study was undertaken to increase knowledge about testicular function in adolescent KS boys. It comprised a longitudinal follow-up of growth, pubertal development, and serum reproductive hormone levels in 14 prepubertal and pubertal KS boys. Each boy had a testicular biopsy that was analyzed with histomorphometric and immunohistochemical methods. The KS boys had sufficient testosterone levels to allow normal onset and progression of puberty. Their serum testosterone levels remained within the low-normal range throughout puberty, but from midpuberty onwards, findings like a leveling-off in testosterone and insulin-like factor 3 (INSL3) concentrations, high gonadotropin levels, and exaggerated responses to gonadotropin-releasing hormone stimulation suggest diminished testosterone secretion. We also showed that the Leydig cell differentiation marker INSL3 may serve as a novel marker for onset and normal progression of puberty in boys. In the KS boys the number of germ cells was already markedly lower at the onset of puberty. The pubertal activation of the pituitary-testicular axis accelerated germ cell depletion, and germ cell differentiation was at least partly blocked at the spermatogonium or early primary spermatocyte stages. The presence of germ cells correlated with serum reproductive hormone levels. The immature Sertoli cells were incapable of transforming to the adult type, and during puberty the degeneration of Sertoli cells increased markedly. The older KS boys displayed an evident Leydig cell hyperplasia, as well as fibrosis and hyalinization of the interstitium and peritubular connective tissue. Altered immunoexpression of the androgen receptor (AR) suggested that in KS boys during puberty a relative androgen deficiency develops at testicular level. The impact of genetic features of the supernumerary X chromosome on the KS phenotype was also studied. The present study suggests that parental origin of the supernumerary X chromosome and the length of the CAG repeat of the AR gene influence pubertal development and testicular degeneration. The current study characterized by several means the testicular degeneration process in the testes of adolescent KS boys and confirmed that this process accelerates at the onset of puberty. Although serum reproductive hormone levels indicated no hypogonadism during early puberty, the histological analyses showed an already markedly reduced fertility potential in prepubertal KS boys. Genetic features of the X chromosome affect the KS phenotype.
Resumo:
The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.
Resumo:
It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.
Resumo:
This work focuses on the role of macroseismology in the assessment of seismicity and probabilistic seismic hazard in Northern Europe. The main type of data under consideration is a set of macroseismic observations available for a given earthquake. The macroseismic questionnaires used to collect earthquake observations from local residents since the late 1800s constitute a special part of the seismological heritage in the region. Information of the earthquakes felt on the coasts of the Gulf of Bothnia between 31 March and 2 April 1883 and on 28 July 1888 was retrieved from the contemporary Finnish and Swedish newspapers, while the earthquake of 4 November 1898 GMT is an example of an early systematic macroseismic survey in the region. A data set of more than 1200 macroseismic questionnaires is available for the earthquake in Central Finland on 16 November 1931. Basic macroseismic investigations including preparation of new intensity data point (IDP) maps were conducted for these earthquakes. Previously disregarded usable observations were found in the press. The improved collection of IDPs of the 1888 earthquake shows that this event was a rare occurrence in the area. In contrast to earlier notions it was felt on both sides of the Gulf of Bothnia. The data on the earthquake of 4 November 1898 GMT were augmented with historical background information discovered in various archives and libraries. This earthquake was of some concern to the authorities, because extra fire inspections were conducted in three towns at least, i.e. Tornio, Haparanda and Piteå, located in the centre of the area of perceptibility. This event posed the indirect hazard of fire, although its magnitude around 4.6 was minor on the global scale. The distribution of slightly damaging intensities was larger than previously outlined. This may have resulted from the amplification of the ground shaking in the soft soil of the coast and river valleys where most of the population was found. The large data set of the 1931 earthquake provided an opportunity to apply statistical methods and assess methodologies that can be used when dealing with macroseismic intensity. It was evaluated using correspondence analysis. Different approaches such as gridding were tested to estimate the macroseismic field from the intensity values distributed irregularly in space. In general, the characteristics of intensity warrant careful consideration. A more pervasive perception of intensity as an ordinal quantity affected by uncertainties is advocated. A parametric earthquake catalogue comprising entries from both the macroseismic and instrumental era was used for probabilistic seismic hazard assessment. The parametric-historic methodology was applied to estimate seismic hazard at a given site in Finland and to prepare a seismic hazard map for Northern Europe. The interpretation of these results is an important issue, because the recurrence times of damaging earthquakes may well exceed thousands of years in an intraplate setting such as Northern Europe. This application may therefore be seen as an example of short-term hazard assessment.
Resumo:
Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.
Resumo:
Black hole X-ray binaries, binary systems where matter from a companion star is accreted by a stellar mass black hole, thereby releasing enormous amounts of gravitational energy converted into radiation, are seen as strong X-ray sources in the sky. As a black hole can only be detected via its interaction with its surroundings, these binary systems provide important evidence for the existence of black holes. There are now at least twenty cases where the measured mass of the X-ray emitting compact object in a binary exceeds the upper limit for a neutron star, thus inferring the presence of a black hole. These binary systems serve as excellent laboratories not only to study the physics of accretion but also to test predictions of general relativity in strongly curved space time. An understanding of the accretion flow onto these, the most compact objects in our Universe, is therefore of great importance to physics. We are only now slowly beginning to understand the spectra and variability observed in these X-ray sources. During the last decade, a framework has developed that provides an interpretation of the spectral evolution as a function of changes in the physics and geometry of the accretion flow driven by a variable accretion rate. This doctoral thesis presents studies of two black hole binary systems, Cygnus~X-1 and GRS~1915+105, plus the possible black hole candidate Cygnus~X-3, and the results from an attempt to interpret their observed properties within this emerging framework. The main result presented in this thesis is an interpretation of the spectral variability in the enigmatic source Cygnus~X-3, including the nature and accretion geometry of its so-called hard spectral state. The results suggest that the compact object in this source, which has not been uniquely identified as a black hole on the basis of standard mass measurements, is most probably a massive, ~30 Msun, black hole, and thus the most massive black hole observed in a binary in our Galaxy so far. In addition, results concerning a possible observation of limit-cycle variability in the microquasar GRS~1915+105 are presented as well as evidence of `mini-hysteresis' in the extreme hard state of Cygnus X-1.