968 resultados para Ferrites (Magnetic materials)
Resumo:
This thesis focuses on the study of the geomagnetic orientation and navigation of homing pigeon and migrating bats. Magnetic minerals, possibly the base of the “magnetoreceptors”, which can perceive the magnetic information from geomagnetic field, are studied using advanced mineral magnetic methods in combination of non-magnetic techniques. In addition, the mechanism of magnetite biomineralization in organism has been probed through the formation of ferritin under laboratory-controlled conditions. A series of magnetic measurements of selected pigeon samples found the biogenic magnetite particles. a significant rapid decay of SIRM5K in the interval of 5–20 K on both zero-field cooled and field cooled warming curves suggests the dominance of superparamagnetic particles in the samples. Additionally, we noted that the content of magnetite particles in the male and the female are different. It is also found that bats contain magnetite. The results of room temperature magnetic measurements of Rhinolophus ferrumequinum and Chaerophon plicatus samples indicates there are magnetite in the heads of bats. The concentration of magnetic materials in the brain is higher than that in the skull. The results of low temperature magnetic measurements in Nyctalus plancyi samples show that the head may contain a small quantity of magnetite particles. In order to study the magnetite biomineralizaiton, ferritin was reconstituted. The results of electron nanodiffraction patterns indicate that the dominant mineral phases in the reconstituted ferritin are ferrihydrite, which is similar to that in the native ferritin. The blocking temperature (TB) is near 20K. A series of magnetic hysteresis at low temperatures (3-21K) show the wasp-waisted hysteresis loop. This can be interpreted by either grain size effects (SP + SD) or different coercivities minerals.
Resumo:
This thesis is focused on the investigation of magnetic materials for high-power dcdc converters in hybrid and fuel cell vehicles and the development of an optimized high-power inductor for a multi-phase converter. The thesis introduces the power system architectures for hybrid and fuel cell vehicles. The requirements for power electronic converters are established and the dc-dc converter topologies of interest are introduced. A compact and efficient inductor is critical to reduce the overall cost, weight and volume of the dc-dc converter and optimize vehicle driving range and traction power. Firstly, materials suitable for a gapped CC-core inductor are analyzed and investigated. A novel inductor-design algorithm is developed and automated in order to compare and contrast the various magnetic materials over a range of frequencies and ripple ratios. The algorithm is developed for foil-wound inductors with gapped CC-cores in the low (10 kHz) to medium (30 kHz) frequency range and investigates the materials in a natural-convection-cooled environment. The practical effects of frequency, ripple, air-gap fringing, and thermal configuration are investigated next for the iron-based amorphous metal and 6.5 % silicon steel materials. A 2.5 kW converter is built to verify the optimum material selection and thermal configuration over the frequency range and ripple ratios of interest. Inductor size can increase in both of these laminated materials due to increased airgap fringing losses. Distributing the airgap is demonstrated to reduce the inductor losses and size but has practical limitations for iron-based amorphous metal cores. The effects of the manufacturing process are shown to degrade the iron-based amorphous metal multi-cut core loss. The experimental results also suggest that gap loss is not a significant consideration in these experiments. The predicted losses by the equation developed by Reuben Lee and cited by Colonel McLyman are significantly higher than the experimental results suggest. Iron-based amorphous metal has better preformance than 6.5 % silicon steel when a single cut core and natural-convection-cooling are used. Conduction cooling, rather than natural convection, can result in the highest power density inductor. The cooling for these laminated materials is very dependent on the direction of the lamination and the component mounting. Experimental results are produced showing the effects of lamination direction on the cooling path. A significant temperature reduction is demonstrated for conduction cooling versus natural-convection cooling. Iron-based amorphous metal and 6.5% silicon steel are competitive materials when conduction cooled. A novel inductor design algorithm is developed for foil-wound inductors with gapped CC-cores for conduction cooling of core and copper. Again, conduction cooling, rather than natural convection, is shown to reduce the size and weight of the inductor. The weight of the 6.5 % silicon steel inductor is reduced by around a factor of ten compared to natural-convection cooling due to the high thermal conductivity of the material. The conduction cooling algorithm is used to develop high-power custom inductors for use in a high power multi-phase boost converter. Finally, a high power digitally-controlled multi-phase boost converter system is designed and constructed to test the high-power inductors. The performance of the inductors is compared to the predictions used in the design process and very good correlation is achieved. The thesis results have been documented at IEEE APEC, PESC and IAS conferences in 2007 and at the IEEE EPE conference in 2008.
Resumo:
The micromagnetic structure and energy of 180° domain walls spanning laminar crystals of iron having (100) or (110) surfaces and ranging in thickness from 145 to 580 nm have been investigated by numerical integration of the Landau-Lifshitz-Gilbert equation. Stable equilibrium structures with two flux symmetries were obtained for both crystal orientations at all thicknesses studied.
Resumo:
There are increasing demands on the power density and efficiency of DC-DC power converters due to the soaring functionality and operational longevity required for today's electronic products. In addition, DC-DC converters are required to operate at new elevated frequencies in the MHz frequency regime. Typical ferrite cores, whose useable flux density falls drastically at these frequencies, have to be replaced and a method of producing compact component windings developed. In this study, two types of microinductors, pot-core and solenoid, for DC-DC converter applications have been analyzed for their performance in the MHz frequency range. The inductors were manufactured using an adapted UV-LIGA process and included electrodeposited nickel-iron and the commercial alloy Vitrovac 6025 as core materials. Using a vibrating sample magnetometer (VSM) and a Hewlett Packard 4192A LF- impedance analyzer, the inductor characteristics such as power density, efficiency, inductance and Q-factor were recorded. Experimental, finite element and analytical results were used to assess the suitability of the magnetic materials and component geometries for low MHz operation.
Resumo:
In the present paper, a phase-field model is developed to simulate the formation and evolution of lamellar microstructure in γ-TiAl alloys. The mechanism of formation of TiAl lamellae proposed by Denquin and Naka is incorporated into the model. The model describes the formation and evolution of the face-centered cubic (fcc) stacking lamellar zone followed by the subsequent appearance and growth of the γ-phase, involving both the chemical composition change by atom transfer and the ordering of the fcc lattice. The thermodynamics of the model system and the interaction between the displacive and diffusional transformations are described by a non-equilibrium free energy formulated as a function of concentration and structural order parameter fields. The long-range elastic interactions, arising from the lattice misfit between the α, fcc (A1) and the various orientation variants of the γ-phase are taken into account by incorporating of the elastic strain energy into the total free energy. Simulation studies based on the model successfully predicted some essential features of the lamellar structure. It is found that the formation and evolution of the lamellar structure are predominantly controlled by the minimization of the elastic energy of the interfaces between the different fcc stacking groups, low-symmetry product phase γ and the high-symmetry α-phase, as well as between the various orientation variants of the product phase.
Resumo:
Beta-phase W, selectively grown at 440C had resistivity 20 micro-ohm cm and maximum layer thickness 100nm. Hydrogen passivation proved essential in this process. Higher deposition temperatures resulted in increased layer thickness but incorporated WSi2 and alpha- phase W. Self limiting W grown on polycrystalline and heavily doped silicon yielded reduced thickness. Boron is involved in the WF6 reduction reaction but phosphorus is not and becomes incorporated in the W layer. The paper establishes an optimised and novel CVD process suited to IC contact technology. A funded technology transfer contract with National Semiconductor Greenock (M Fallon) resulted from this work.
Resumo:
Novel CVD WSi2 technology with low series and contact resistance in SiGe HBTs was achieved. Specific contact resistance to Si1-xGex with 0
Resumo:
Mixed-mode simulation, where device simulation is embedded directly within a circuit simulator, is used for the first time to provide scaling guidelines to achieve optimal digital circuit performance for double gate SOI MOSFETs. This significant advance overcomes the lack of availability of SPICE model parameters. The sensitivity of the gate delay and on-off current ratio to each of the key geometric and technological parameters of the transistor is quantified. The impact of the source-drain doping profile on circuit performance is comprehensively investigated.
Resumo:
Novel technology dependent scaling parameters i.e. spacer to gradient ratio and effective channel length (Leff) are proposed for source/drain engineered DG MOSFET, and their significance in minimizing short channel effects (SCES) in high-k gate dielectrics is discussed in detail. Results show that a high-k dielectric should be associated with a higher spacer to gradient ratio to minimise SCEs The analytical model agrees with simulated data over the entire range of spacer widths, doping gradients, high-k gate dielectrics and effective channel lengths.
Resumo:
This is the first paper to describe performance assessment of triple and double gate FinFETs for High Performance (HP), Low Operating Power (LOP) and Low Standby Power (LSTP) logic technologies is investigated. The impact of gate work-function, spacer width, lateral source/drain doping gradient, fin aspect ratio, fin thickness on device performance, has been analysed in detail and guidelines are presented to meet ITRS specification at 65 and 45 nm nodes. Optimal design of lateral source/drain doping profile can not only effectively control short channel effects, yielding low off-current, but also achieve low values of intrinsic gate delay.