971 resultados para Bio-magnetic materials
Resumo:
This is the first paper to describe performance assessment of triple and double gate FinFETs for High Performance (HP), Low Operating Power (LOP) and Low Standby Power (LSTP) logic technologies is investigated. The impact of gate work-function, spacer width, lateral source/drain doping gradient, fin aspect ratio, fin thickness on device performance, has been analysed in detail and guidelines are presented to meet ITRS specification at 65 and 45 nm nodes. Optimal design of lateral source/drain doping profile can not only effectively control short channel effects, yielding low off-current, but also achieve low values of intrinsic gate delay.
Resumo:
The application of precision grinding for the formation of a silicon diaphragm is investigated. The test structures involved 2-6 mm diam diaphragms with thicknesses in the range of 25-150 //m. When grinding is performed without supporting the diaphragm, bending occurs due to nonuniform removal of the silicon material over the diaphragm region. The magnitude of bending depends on the µNal thickness of the diaphragm. The results demonstrate that the use of a porous silicon support can significantly reduce the amount of bending, by a factor of up to 300 in the case of 50 m thick diaphragms. The use of silicon on insulator (SOI) technology can also suppress or eliminate bending although this may be a less economical process. Stress measurements in the diaphragms were performed using x-ray and Raman spectroscopies. The results show stress of the order of 1 X107-! X108 Pa in unsupported and supported by porous silicon diaphragms while SOI technology provides stress-free diaphragms. Results obtained from finite element method analysis to determine deterioration in the performance of a 6 mm diaphragm due to bending are presented. These results show a 10% reduction in performance for a 75 µm thick diaphragm with bending amplitude of 30 fim, but negligible reduction if the bending is reduced to
Resumo:
We report results of first-principles calculations on the thermodynamic stability of different Sr adatom structures that have been proposed to explain some of the observed reconstructions of the (001) surface of strontium titanate (Kubo and Nozoye 2003 Surf Sci. 542 177). From surface free energy calculations, a phase diagram is constructed indicating the range of conditions over which each structure is most stable. These results are compared with Kubo and Nozoye's experimental observations. It is concluded that low Sr adatom coverage structures can only be explained if the surface is far from equilibrium. Intermediate coverage structures are stable only if the surface is in or very nearly in equilibrium with the strontium oxide.
Resumo:
The microscopic mechanism leading to stabilization of cubic and tetragonal forms of zirconia (ZrO2) is analyzed by means of a self-consistent tight-binding model. Using this model, energies and structures of zirconia containing different vacancy concentrations are calculated, equivalent in concentration to the charge compensating vacancies associated with dissolved yttria (Y2O3) in the tetragonal and cubic phase fields (3.2 and 14.4% mol, respectively). The model is shown to predict the large relaxations around an oxygen vacancy, and the clustering of vacancies along the 111 directions, in good agreement with experiments and first principles calculations. The vacancies alone are shown to explain the stabilization of cubic zirconia, and the mechanism is analyzed. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A broad survey of harmonic dynamics in AB(2) clusters with up to N = 3000 atoms is performed using a simple rigid ion model, with ionic radii selected to give rutile as the ground state structure for the corresponding extended crystal. The vibrational density of states is already close to its bulk counterpart for N similar to 500, with characteristic differences due to surfaces, edges and vertices. Two methods are proposed and tested to map the cluster vibrational states onto the rutile crystal phonons. The net distinction between infrared (IR) active and Raman active modes that exists for bulk rutile becomes more and more blurred as the cluster size is reduced. It is found that, in general, the higher the IR activity of the mode, the more this is affected by the system size. IR active modes are found to spread over a wide frequency range for the finite clusters. Simple models based on either a crude confinement constraint or surface pressure arguments fail to reproduce the results of the calculations. The effects of the stoichiometry and dielectric properties of the surrounding medium on the vibrational properties of the clusters are also investigated.
Resumo:
In situ ellipsometry and Kerr polarimetry have been used to follow the continuous evolution of the optical and magneto- optical properties of multiple layers of Co and Pd during their growth. Films were sputter deposited onto a Pd buffer layer on glass substrates up to a maximum of N = 10 bi-layer periods according to the scheme glass/Pd(10)Ar x (0.3Co/3Pd) (nm). Magnetic hysteresis measurements taken during the deposition consistently showed strong perpendicular anisotropy at all stages of film growth following the deposition of a single monolayer of Co. Magneto-optic signals associated with the normal-incidence polar Kerr effect indicated strong polarization of Pd atoms at both Co-Pd and Pd-Co interfaces and that the magnitude of the complex magneto-optic Voigt parameter and the magnetic moment of the Pd decrease exponentially with distance from the interface with a decay constant of 1.1 nm(- 1). Theoretical simulations have provided an understanding of the observations and allow the determination of the ultrathin- film values of the elements of the skew-symmetric permittivity tensor that describe the optical and magneto-optical properties for both CO and Pd. Detailed structure in the observed Kerr ellipticity shows distinct Pd-thickness-dependent oscillations with a spatial period of about 1.6 nm that are believed to be associated with quantum well levels in the growing Pd layer.
Resumo:
Measurements on 'free-standing' single-crystal barium titanate capacitors with thickness down to 75 nm show a dielectric response typical of large single crystals, rather than conventional thin films. There is a notable absence of any broadening or temperature shift of the dielectric peak or loss tangent. Peak dielectric constants of similar to25 000 are observed, and Curie-Weiss analysis demonstrates first order transformation behaviour. This is in dramatic contrast to results on conventionally deposited thin film capacitor heterostructures, which show large dielectric peak broadening and temperature shifts (e.g. Parker et al 2002 Appl. Phys. Lett. 81 340), as well as an apparent change in the nature-of the paraelectric-ferroelectric transition from first to second order. Our data are compatible with a recent model by Bratkovsky and Levanyuk (2004 Preprint cond-mat/0402100), which attributes dielectric peak broadening to gradient terms that will exist in any thin film capacitor heterostructure. The observed recovery of first order transformation behaviour is consistent with the absence of significant substrate clamping in our experiment, as modelled by Pertsev et al (1998,Phys. Rev. Lett. 80 1988), and illustrates that the second order behaviour seen in conventionally deposited thin films cannot be attributed to the effects of reduced dimensionality in the system, nor to the influence of an intrinsic universal interfacial capacitance associated with the electrode- ferroelectric interface.
Resumo:
We have measured the electrical transport properties of mats of single-walled carbon nanotubes (SWNT) as a function of applied electric and magnetic fields. We find that at low temperatures the resistance as a function of temperature R(T) follows the Mott variable range hopping (VRH) formula for hopping in three dimensions. Measurement of the electric field dependence of the resistance R(E) allows for the determination of the Bohr radius of a localized state a = 700nm. The magnetoresistance (MR) of SWNT mat samples is large and negative at all temperatures and fields studied. The low field negative MR is proportional to H2, in agreement with variable range hopping in two or three dimensions. 3D VRH indicates good intertube contacts, implying that the localization is due to the disorder experienced by the individual tubes. The 3D localization radius gives a measure of the ID localization length on the individual tubes, which we estimate to be >700 nm. Implications for the electron-phonon mean free path are discussed.
Resumo:
We extend a new formalism, which allows correlated electron-ion dynamics to be applied to the problem of open boundary conditions. We implement this at the first moment level (allowing heating of ions by electrons) and observe the expected cooling in the classical part of the ionic kinetic energy and current-induced heating in the quantum contribution. The formalism for open boundaries should be easily extended to higher moments of the correlated electron-ion fluctuations.