999 resultados para TEMPERATURE-GROWN GAAS
Resumo:
High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.
Resumo:
Self-assembled InAs quantum dots (QDs) with differing deposition thicknesses covered by InxAl1-xAs (x = 0.2, 0.3) and In0.2Ga0.8As combination strain-reducing layers (CSRLs) were grown by molecular beam epitaxy. Their structural and optical properties were investigated by atomic force microscopy and photoluminescence spectroscopy, respectively. The emission peak position of InAs QDs capped by CSRL can reach 1.34 mum at room temperature with a relatively larger energy splitting of 93 meV between the ground and first excited states.
Resumo:
We have studied the influence of the growth temperature of the high-temperature (HT) AIN buffer layer on the properties of the GaN epilayer which was grown on Si(111) substrate by metalorganic chemical vapor deposition (MOCVD). It was found that the crystal quality of the GaN epilayer strongly depends on the growth temperature of the HT-AIN buffer. The growth temperature of the AIN buffer to obtain high-quality GaN epilayers lies in a narrow window of several tens of degrees. When the temperature is lower than a certain temperature range, the appearance of AIN polycrystals results in the deterioration of the crystal quality of the AIN buffer layer, which is greatly disadvantageous to the coalescence of the GaN epilayer. Although the AIN buffer's crystal quality is improved as the growth temperature increases, the Si outdiffusion from the substrate is also enhanced when the temperature is higher than a certain temperature range, which will demolish the subsequent growth of the GaN epilayer. Therefore, there exists an optimum growth temperature range of the AIN buffer around 1080degreesC for the growth of high-quality GaN epilayers. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence (PL) spectra of the GaInNAs/GaAs single quantum well (SQW) with different N compositions are carefully studied in a range of temperatures and excitation power densities. The anomalous S-shape temperature dependence of the PL peak is analysed based on the competition and switching-over between the peaks related to N-induced localized states and the peak related to interband excitonic recombination. It is found that with increasing N composition, the localized energy increases and the turning point of the S-shape temperature dependence occurs at higher temperature, where the localized carriers in the bandtail states obtain enough thermal activation energy to be dissociated and delocalized. The rapid thermal annealing (RTA) effectively reduces the localized energy and causes a decrease of the switching-over temperature.
Resumo:
Self-aligned InAs quantum wires (QWRs) or three-dimensional (3D) islands are fabricated on GaAs(331)A substrates by molecular beam epitaxy (MBE). InAs QWRs are selectively grown on the step edges formed by GaAs layers. The surface morphology of InAs nanostructures is carefully investigated by atomic force microscopy (AFM) measurements. Different growth conditions, such as substrate temperature, growth approaches, and InAs coverage, exert a great effect on the morphology of InAs islands. Low substrate temperatures favour the formation of wirelike nanostructures, while high substrate temperatures favour 3D islands. The shape transition is attributed to the trade-off between surface energy and strain energy. A qualitative agreement of our experimental data with the theoretical results derived from the model proposed by Tersoff and Tromp is achieved.
Resumo:
Effects of V/III ratio on heavily Si doped InGaAs and InP were studied using low pressure metalorganic chemical vapor deposition (LP-MOCVD) at a growth temperature of 550degreesC. In InGaAs, as the V/III ratio decreases from 256 to 64, the carrier concentration increases from 3.0 x 10(18) to 5.8 x 10(18) cm(-3), and the lattice mismatch of InGaAs to InP was observed to vary from -5.70 x10(-4) to 1.49 x 10(-3). In InP, when the V/III ratio decreases from 230 to 92, the same trend as that in Si doped InGaAs was observed that the carrier concentration increases from 9.2 x 10(18) to 1.3 x 10(19) cm(-3). The change of AsH3 was found to have stronger effect on Si incorporation in InGaAs at lower growth temperature than at higher growth temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Thermal annealing effect on InAs quantum dots grown on vicinal (100) GaAs substrates is studied in comparison with dots on exact (100) GaAs substrates. We find that annealing acts stronger effect on dots with vicinal substrates by greatly accelerating the degradation of material quality. as well as slightly increasing the blueshift of the emission wavelength and the narrowing of PL linewidth. It is attributed to the higher strain in the dots formed on the vicinal substrates.
Resumo:
We report the design, growth, fabrication, and characterization of a GaAs-based resonant-cavity-enhanced (RCE) GaInNAs photodetector operating at 1.55 mu m. The structure of the device was designed using a transfer-matrix method (TMM). By optimizing the molecular-beam epitaxy growth conditions, six GaInNAs quantum wells were used as the absorption layers. Twenty-five (25)- and 9-pair GaAs/AlAs-distributed Bragg reflectors were grown as the bottom and top mirrors. At 1.55 mu m, a quantum efficiency of 33% with a full width at half maximum of 10 nm was obtained. The dark current density was 3x10(-7) A/cm(2) at a bias of 0 V and 4.3x10(-5) A/cm(2) at a reverse bias of 5 V. The primary time response measurement shows that the device has a rise time of less than 800 ps. (c) 2005 American Institute of Physics.
Resumo:
The influences of a high-temperature (HT) AlN interlayer (IL) on the phase separation in crack-free AlGaN grown on GaN have been studied. The depth-dependent cathodoluminescence (CL) spectra indicate a relatively uniform Al distribution in the growth direction, but the monochromatic CL images and the CL spectra obtained by line scan measurements reveal a lateral phase separation in AlGaN grown on relatively thick HT-AlN ILs. Moreover, when increasing the thickness of HT-AlN IL, the domain-like distribution of the AlN mole fraction in AlGaN layers is significantly enhanced through a great reduction of the domain size. The morphology of mesa-like small islands separated by V trenches in the HT-AlN IL, and the grain template formed by the coalescence of these islands during the subsequent AlGaN lateral overgrowth, are attributed to be responsible for the formation of domain-like structures in the AlGaN layer. (c) 2005 American Institute of Physics.
Resumo:
We present a comparative study of InAs quantum dots grown on Si-doped GaAs (10 0) substrates, Si-doped GaAs (10 0) vicinal substrates, and semi-insulating GaAs (10 0) substrates. The density and size distribution of quantum dots varied greatly with the different substrates used. While dots on exact substrates showed only one dominant size, a clear bimodal size distribution of the InAs quantum dots was observed on GaAs vicinal substrates, which is attributed to the reduced surface diffusion due to the presence of multiatomic steps. The emission wavelength is blueshifted during the growth of GaAs cap layer with a significant narrowing of FWHM. We found that the blueshift is smaller for QDs grown on GaAs (10 0) vicinal substrates than that for dots on exact GaAs (100) substrates. This is attributed to the energy barrier formed at the multiatomic step kinks which prohibits the migration of In adatoms during the early stage of cap layer growth. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
GaNAs/GaAs single quantum wells (SQWs) and dilute GaNAs bulk grown by molecular beam epitaxy(MBE) were studied by photoluminescence (PL), selectively-excited PL, and time-resolved PL. Exciton localization and delocalization were investigated in detail. Under short pulse laser excitation, the delocalization exciton emission was revealed in GaNAs/GaAs SQWs. It exhibits quite different optical properties from N-related localized states. In dilute GaNAs bulk, a transition of alloy band related recombination was observed by measuring the PL dependence on temperature and excitation intensity and time-resolved PL, as well. This alloy-related transition presents intrinsic optical properties. These results are very important for realizing the abnomal features of III-V-N semiconductors.
Resumo:
Molecular beam epitaxy (MBE) growth of (InyGa1-yAs/GaAs1-xSbx)/GaAs bilayer quantum well (BQW) structures has been investigated. It is evidenced by photo luminescence (PL) that a strong blue shift of the PL peak energy of 47 meV with increasing PL excitation power from 0.63 to 20 mW was observed, indicating type II band alignment of the BQW. The emission wavelength at room temperature from (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW is longer (above 1.2 μ m) than that from InGaAs/GaAs and GaAsSb/GaAs SQW structures (1.1 μ m range), while the emission efficiency from the BQW structures is comparable to that of the SQW. Through optimizing growth conditions, we have obtained room temperature 1.31 μ m wavelength emission from the (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW. Our results have proved experimentally that the GaAs-based bilayer (InyGa1-yAs/GaAs1-xSbx)/GaAs quantum well is a useful structure for the fabrication of near-infrared wavelength optoelectronic devices. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This work demonstrates the condition optimization during liquid phase deposition (LPD) Of SiO2/GaAs films. LPD method is further applied to form Al2O3 films on semiconductors with poison-free materials. Proceeding at room temperature with inexpensive equipment, LPD of silica and alumina films is potentially serviceable in microelectronics and related spheres.
Resumo:
The structural and photoluminescence (PL) properties of the InAs quantum dots (QDs) grown on a combined InAlAs and GaAs strained buffer layer have been investigated by AFM and PL measurements. The dependence of the critical thickness for the transition from 2D to 3D on the thickness of GaAs layer is demonstrated directly by RHEED. The effects of the introduced-InAlAs layer on the density and the aspect ratio of QDs have been discussed.
Resumo:
We have investigated the effect of the thickness and layer number of the low-temperature A1N interlayer (LT-A1N IL) on the stress relaxation and the crystal quality of GaN epilayers grown on Si (111) substrate by metalorganic chemical vapor deposition. It is found that the stress decreases with the increase of the LT-AIN IL thickness, but the crystal quality of the GaN epilayer goes worse quickly when the LT-AIN IL thickness is larger than 16 nm. This is because the increase of the LT-AIN IL thickness will increase the coalescence thickness of its upper GaN layer, which sensitively affects the crystal quality of the epilayer. Using multiple LT-AIN ILs is an effective method not only to reduce the stress, but also to improve the crystal quality of the GaN epilayer. With the increase of the interlayer number, the probability that dislocations are blocked increases and the probability that dislocations are produced at interfaces decreases. Thus, dislocations in the most upper part of GaN are reduced, resulting in the improvement of the crystal quality. Finally, it is suggested that when the total thickness of the epilayer is fixed, both the thickness and the number of the LT-AIN IL should be carefully designed to reduce the stress and improve the crystal quality of the epilayer simultaneously. (c) 2004 Elsevier B.V.. All rights reserved.