911 resultados para Autonomous robots -- Control systems
Resumo:
The interest in the development of climbing robots has grown rapidly in the last years. Climbing robots are useful devices that can be adopted in a variety of applications, such as maintenance and inspection in the process and construction industries. These systems are mainly adopted in places where direct access by a human operator is very expensive, because of the need for scaffolding, or very dangerous, due to the presence of an hostile environment. The main motivations are to increase the operation efficiency, by eliminating the costly assembly of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing robots have already been developed, and other are under development, for applications ranging from cleaning to inspection of difficult to reach constructions. A wall climbing robot should not only be light, but also have large payload, so that it may reduce excessive adhesion forces and carry instrumentations during navigation. These machines should be capable of travelling over different types of surfaces, with different inclinations, such as floors, walls, or ceilings, and to walk between such surfaces (Elliot et al. (2006); Sattar et al. (2002)). Furthermore, they should be able of adapting and reconfiguring for various environment conditions and to be self-contained. Up to now, considerable research was devoted to these machines and various types of experimental models were already proposed (according to Chen et al. (2006), over 200 prototypes aimed at such applications had been developed in the world by the year 2006). However, we have to notice that the application of climbing robots is still limited. Apart from a couple successful industrialized products, most are only prototypes and few of them can be found in common use due to unsatisfactory performance in on-site tests (regarding aspects such as their speed, cost and reliability). Chen et al. (2006) present the main design problems affecting the system performance of climbing robots and also suggest solutions to these problems. The major two issues in the design of wall climbing robots are their locomotion and adhesion methods. With respect to the locomotion type, four types are often considered: the crawler, the wheeled, the legged and the propulsion robots. Although the crawler type is able to move relatively faster, it is not adequate to be applied in rough environments. On the other hand, the legged type easily copes with obstacles found in the environment, whereas generally its speed is lower and requires complex control systems. Regarding the adhesion to the surface, the robots should be able to produce a secure gripping force using a light-weight mechanism. The adhesion method is generally classified into four groups: suction force, magnetic, gripping to the surface and thrust force type. Nevertheless, recently new methods for assuring the adhesion, based in biological findings, were proposed. The vacuum type principle is light and easy to control though it presents the problem of supplying compressed air. An alternative, with costs in terms of weight, is the adoption of a vacuum pump. The magnetic type principle implies heavy actuators and is used only for ferromagnetic surfaces. The thrust force type robots make use of the forces developed by thrusters to adhere to the surfaces, but are used in very restricted and specific applications. Bearing these facts in mind, this chapter presents a survey of different applications and technologies adopted for the implementation of climbing robots locomotion and adhesion to surfaces, focusing on the new technologies that are recently being developed to fulfill these objectives. The chapter is organized as follows. Section two presents several applications of climbing robots. Sections three and four present the main locomotion principles, and the main "conventional" technologies for adhering to surfaces, respectively. Section five describes recent biological inspired technologies for robot adhesion to surfaces. Section six introduces several new architectures for climbing robots. Finally, section seven outlines the main conclusions.
Resumo:
Os sistemas de perceção existentes nos robôs autónomos, hoje em dia, são bastante complexos. A informação dos vários sensores, existentes em diferentes partes do robôs, necessitam de estar relacionados entre si face ao referencial do robô ou do mundo. Para isso, o conhecimento da atitude (posição e rotação) entre os referenciais dos sensores e o referencial do robô é um fator critico para o desempenho do mesmo. O processo de calibração dessas posições e translações é chamado calibração dos parâmetros extrínsecos. Esta dissertação propõe o desenvolvimento de um método de calibração autónomo para robôs como câmaras direcionais, como é o caso dos robôs da equipa ISePorto. A solução proposta consiste na aquisição de dados da visão, giroscópio e odometria durante uma manobra efetuada pelo robô em torno de um alvo com um padrão conhecido. Esta informação é então processada em conjunto através de um Extended Kalman Filter (EKF) onde são estimados necessários para relacionar os sensores existentes no robô em relação ao referencial do mesmo. Esta solução foi avaliada com recurso a vários testes e os resultados obtidos foram bastante similares aos obtidos pelo método manual, anteriormente utilizado, com um aumento significativo em rapidez e consistência.
Resumo:
The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.
Resumo:
Manipulator systems are rather complex and highly nonlinear which makes difficult their analysis and control. Classic system theory is veil known, however it is inadequate in the presence of strong nonlinear dynamics. Nonlinear controllers produce good results [1] and work has been done e. g. relating the manipulator nonlinear dynamics with frequency response [2–5]. Nevertheless, given the complexity of the problem, systematic methods which permit to draw conclusions about stability, imperfect modelling effects, compensation requirements, etc. are still lacking. In section 2 we start by analysing the variation of the poles and zeros of the descriptive transfer functions of a robot manipulator in order to motivate the development of more robust (and computationally efficient) control algorithms. Based on this analysis a new multirate controller which is an improvement of the well known “computed torque controller” [6] is announced in section 3. Some research in this area was done by Neuman [7,8] showing tbat better robustness is possible if the basic controller structure is modified. The present study stems from those ideas, and attempts to give a systematic treatment, which results in easy to use standard engineering tools. Finally, in section 4 conclusions are presented.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
In recent years the analysis and synthesis of (mechanical) control systems in descriptor form has been established. This general description of dynamical systems is important for many applications in mechanics and mechatronics, in electrical and electronic engineering, and in chemical engineering as well. This contribution deals with linear mechanical descriptor systems and its control design with respect to a quadratic performance criterion. Here, the notion of properness plays an important role whether the standard Riccati approach can be applied as usual or not. Properness and non-properness distinguish between the cases if the descriptor system is exclusively governed by the control input or by its higher-order time-derivatives additionally. In the unusual case of non-proper systems a quite different problem of optimal control design has to be considered. Both cases will be solved completely.
Resumo:
In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm