Sistema de auto calibração visual para robots do ISePorto, baseado em EKF


Autoria(s): Ribeiro, João Pedro Carvalho
Contribuinte(s)

Almeida, José

Data(s)

04/07/2014

04/07/2014

2013

Resumo

Os sistemas de perceção existentes nos robôs autónomos, hoje em dia, são bastante complexos. A informação dos vários sensores, existentes em diferentes partes do robôs, necessitam de estar relacionados entre si face ao referencial do robô ou do mundo. Para isso, o conhecimento da atitude (posição e rotação) entre os referenciais dos sensores e o referencial do robô é um fator critico para o desempenho do mesmo. O processo de calibração dessas posições e translações é chamado calibração dos parâmetros extrínsecos. Esta dissertação propõe o desenvolvimento de um método de calibração autónomo para robôs como câmaras direcionais, como é o caso dos robôs da equipa ISePorto. A solução proposta consiste na aquisição de dados da visão, giroscópio e odometria durante uma manobra efetuada pelo robô em torno de um alvo com um padrão conhecido. Esta informação é então processada em conjunto através de um Extended Kalman Filter (EKF) onde são estimados necessários para relacionar os sensores existentes no robô em relação ao referencial do mesmo. Esta solução foi avaliada com recurso a vários testes e os resultados obtidos foram bastante similares aos obtidos pelo método manual, anteriormente utilizado, com um aumento significativo em rapidez e consistência.

Autonomous mobile robots perception systems are complex multi-sensors systems. Information from different sensors, placed in different parts of the platforms, need to be related and fused into some representation of the world or robot state. For that, the knowledge of the relative pose (position and rotation) between sensors frames and the platform frame plays a critical role. The process to determine those is called extrinsic calibration. This paper addresses the development of automatic robot calibration tool for robots with rotating directional cameras, such as the ISePorto team robots. The proposed solution consists on a robot navigating in a path, while acquiring visual information provided by a known target positioned in a global reference frame. This information is then combined with wheel odometry sensors, robot rotative axis encoders and gyro information within an Extended Kalman Filter (EKF) framework, that estimates all parameters required for the sensors angles and position determination related to the robot body frame. We evaluated our solution, by performing several trials and obtaining similar results to the previous used manual calibration procedure, but with a much less time consuming performance and also without being susceptible to human error.

Identificador

http://hdl.handle.net/10400.22/4704

Idioma(s)

por

Publicador

Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto.

Direitos

openAccess

Tipo

masterThesis