921 resultados para spherical quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wetting layer (WL) in InAs/GaAs quantum-dot systems has been studied by reflectance difference spectroscopy (RDS). Two structures related to the heavy-hole (HH) and light-hole (LH) related transitions in the WL have been observed. On the basis of a calculation model that takes into account the segregation effect and exciton binding energies, the amount of InAs in the WL (t(WL)) and its segregation coefficient ( R) have been determined from the HH and LH transition energies. The evolutions of tWL and R exhibit a close relation to the growth modes. Before the formation of InAs dots, t(WL) increases linearly from similar to 1 to similar to 1.6 monolayer (ML), while R increases almost linearly from similar to 0.8 to similar to 0.85. After the onset of dot formation, t(WL) is saturated at similar to 1.6 ML and R decreases slightly from 0.85 to 0.825. The variation of tWL can be interpreted by using an equilibrium model. Different variations of in-plane optical anisotropy before and after dot formation have been observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By comparing the results of some well-controlled calculation methods, we analyze the relative importance of bulk band structure, multi-bulk-band coupling, and boundary conditions in determining colloidal quantum dot conduction band eigenenergies. We find that while the bulk band structure and correct boundary conditions are important, the effects of multi-bulk-band coupling are small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broadband superluminescent diodes are fabricated by using InAs/GaAs self-assembled quantum dots as an active region. The devices exhibited properties of 110 run bandwidth with the centre of 1.1 mu m and above 30 mW output under pulse injection at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-indium-content self-assembled InGaAs/GaAs quantum dots (SAQD) were grown using solid-source molecular beam epitaxy (MBE) and investigated by atomic force microscopy and photoluminescence (PL) spectroscopy. Silicon, which was doped at different quantum dot (QD) growth stages, markedly increased the density of QD. We obtained high density In0.35Ga0.65As/GaAs(001) quantum dots of 10(11)/cm(2) at a growth temperature of 520degreesC. PL spectra and distribution statistics show the high quality and uniformity of our silicon-doped samples. The density increment can be explained using the lattice-hardening mechanism due to silicon doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ballistic transport in the semiconductor, planar, circular quantum dot structures is studied theoretically. The transmission probabilities show apparent resonant tunneling peaks, which correspond to energies of bound states in the dot. By use of structures with different angles between the inject and exit channels, the resonant peaks can be identified very effectively. The perpendicular magnetic field has obvious effect on the energies of bound states in the quantum dot, and thus the resonant peaks. The treatment of the boundary conditions simplifies the problem to the solution of a set of linear algebraic equations. The theoretical results in this paper can be used to design planar resonant tunneling devices, whose resonant peaks are adjustable by the angle between the inject and exit channels and the applied magnetic field. The resonant tunneling in the circular dot structures can also be used to study the bound states in the absence and presence of magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a new type of photonic memory cell based on a semiconductor quantum dot (QD)-quantum well (QW) hybrid structure, in which photo-generated excitons can be decomposed into separated electrons and holes, and stored in QW and QDs respectively. Storage and retrieval of photonic signals are verified by time-resolved photoluminescence experiments. A storage time in excess of 100ms has been obtained at a temperature of 10 K while the switching speed reaches the order of ten megahertz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the quantum dynamics of the quantum-dot cellular automata qubit in the presence of a quantum point contact detector by modified rate equations. It is demonstrated that the qubit information can be resolved by measuring the detector current variation. Furthermore, we show that this oscillating current and the electron occupation probabilities in states \b> and \c> decay drastically as the dephasing rate increases, clearly revealing the influence of the dephasing induced by the detector. Moreover, it is shown that the operation speed of the quantum-dot cellular automata qubit may be adjusted by varying the interdot coupling strength. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microcavity structure, containing self-assembled InGaAs quantum dots, is studied by angle-resolved photoluminescence (PL) spectroscopy. A doublet with the splitting energy of 0.5-1.5 nm appears when the detection angle is larger than 35degrees. This doublet is identified as mode splitting (not the Rabi splitting) by polarization measurements. We find that it is the considerable deviation of the cavity-mode frequency from the central frequency of the stop band that makes the TE and TM cavity modes split more discernibly. The inhomogeneous broadening of quantum dots gives the TE and TM cavity modes a chance to show up simultaneously in the PL spectra. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent transport through a quantum dot embedded in one arm of a double-slit-like Aharonov-Bohm (AB) ring is studied using the Green's function approach. We obtain experimental observations such as continuous phase shift along a single resonance peak and sharp inter-resonance phase drop. The AB oscillations of the differential conductance of the whole device are calculated by using the nonequilibrium Keldysh formalism. It is shown that the oscillating conductance has a continuous bias-voltage-dependent phase shift and is asymmetric in both linear and nonlinear response regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a new superluminescent diodes (SLD) aimed at wide spectrum-quantum dot superluminescent diodes (QD-SLD), which is characterized by the introduction of a self-assembled asymmetric quantum dot pairs active region into conventional SLID structure. We investigated the structure and optical properties of a bilayer sample with different InAs deposition amounts in the first and second layer. We find that the structure of a self-assembled asymmetric quantum dot pairs can operate up to a 150 nm spectral width. In addition, as the first QDs' density can modulate the density of the QDs on the second layer, due to relatively high QDs density of the first layer, we can get the strong PL intensity from a broad range. We think that for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for QW-SLD. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have obtained the parameter-phase diagram, which unambiguously defines the parameter region for the use of InAs/GaAs quantum dot as two-level quantum system in quantum computation in the framework of the effective-mass envelope function theory. Moreover, static electric field is found to efficiently prolong decoherence time. As a result, decoherence time may reach the order of magnitude of milli-seconds as external static electric field goes beyond 20 kV/cm if only vacuum fluctuation is taken as the main source for decoherence. Our calculated results are useful for guiding the solid-state implementation of quantum computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the generalized rate equation for the coupled quantum-dot (QD) system irradiated by a microwave field in the presence of a quantum point contact. It is shown that when a microwave field is tuned in resonance with the energy difference between the ground states of two QD's, the photon-assisted tunneling occurs and, as a result, the coupled QD system may be used as the single qubit. Furthermore, we show that the oscillating current through the detector decays drastically as the dephasing rate increases, indicating clearly the influence of the dephasing effect induced by the quantum point contact used as a detecting device.