910 resultados para Power, Eugene B., 1905-


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High power and long lifetime have been demonstrated for a semiconductor quantum-dot (QD) laser with five-stacked InAs/GaAs QDs separated by an InGaAs strain-reducing layer (SRL) and a GaAs spacer layer as an active medium. The QD lasers exhibit a peak power of 3.6 W at 1080 nm, a quantum slope efficiency of 84.6%, and an output-power degradation rate of 5.6%/1000 h with continuous-wave constant-current operation at room temperature. A comparative reliability investigation indicates that the lifetime of the InAs/GaAs QD laser with the InGaAs SRL is much longer than that of a QD laser without the InGaAs SRL. This improved lifetime of the QD laser could be explained by the reduction of strain in and around InAs QDs induced by the InGaAs SRL. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system. by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level policies. We proposed two PAY policies-Back propagation Power Management (BPPM) and Radial Basis Function Power management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79,145,1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a low-power, highly linear, integrated, active-RC filter exhibiting a multi-standard (IEEE 802.11a/b/g and DVB-H) application and bandwidth (3MHz, 4MHz, 9.5MHz) is present. The filter exploits digitally-controlled polysilicon resister banks and an accurate automatic tuning scheme to account for process and temperature variations. The automatic frequency calibration scheme provides better than 3% corner frequency accuracy. The Butterworth filter is design for receiver (WLAN and DVB-H mode) and transmitter (WLAN mode). The filter dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from 2.85-V supply. The dissipation of calibration consumes 2mA. The circuit has been fabricated in a 0.35um 47-GHz SiGe BiCMOS technology, the receiver and transmitter occupy 0.28-mm(2) and 0.16-mm(2) (calibration circuit excluded), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an 8-bit low power cascaded folding and interpolating analog-to-digital converter (ADC). A reduction in the number of comparators, equal to the number of times the signal is folded, is obtained. The interleaved architecture is used to improve the sampling rate of the ADC. The circuit including a bandgap is implemented in a 0.18-mu m CMOS technology, and measures 1.47 mm X 1.47 mm (including pads). The simulation results illustrate a conversion rate of 1-GSamples/s and a power dissipation of less than 290mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

808 nm high-power laser diodes are gown by MBE. In the laser structure, the combination of Si-doped GRIN (graded-index) region adjacent to n-AlGaAs cladding layer with reduced Be doping concentration near the active region has been used to diminish Be diffusion and oxygen incorporation. As compared with the laser structure which has undoped GRIN region and uniform doping concentration for Si and Be, respectively, in the cladding layers, the slope efficiency has increased by about 8%. Typical threshold current density of 300 A/cm(2) and the minimum threshold current density of 220 A/cm(2) for lasers with 500 mu m cavity length are obtained. A high slope efficiency of 1.3 W/A for coated lasers with 1000 mu m cavity length is also demonstrated, Recorded CW output power at room temperature has reached 2.3 W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-finger structure power SiGe HBT device (with an emitter area of about 166μm^2) is fabricated with very simple 2μm double-mesa technology. The DC current gain β is 144.25. The B-C junction breakdown voltage reaches 9V with a collector doping concentration of 1 × 10^17cm^-3 and a collector thickness of 400nm. Though our data are influenced by large additional RF probe pads, the device exhibits a maximum oscillation frequency fmax of 10.1GHz and a cut-off frequency fτ of 1.8GHz at a DC bias point of IC=10mA and VCE = 2.5V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum dot (QD) lasers are expected to have superior properties over conventional quantum well lasers due to a delta-function like density of states resulting from three dimensional quantum confinements. QD lasers can only be realized till significant improvements in uniformity of QDs with free of defects and increasing QD density as well in recent years. In this paper, we first briefly give a review on the techniques for preparing QDs, and emphasis on strain induced self-organized quantum dot growth. Secondly, self-organized In(Ga)As/GaAs, InAlAs/GaAlAs and InAs/InAlAs Qds grown on both GaAs and InP substrates with different orientations by using MBE and the Stranski-Krastanow (SK) growth mode at our labs are presented. Under optimizing the growth conditions such as growth temperature, V/III ratio, the amount of InAs, InxGa1-xAs, InxAl1-xAs coverage, the composition x etc., controlling the thickness of the strained layers, for example, just slightly larger than the critical thickness and choosing the substrate orientation or patterned substrates as well, the sheet density of ODs can reach as high as 10(11) cm(-2), and the dot size distribution is controlled to be less than 10% (see Fig. 1). Those are very important to obtain the lower threshold current density (J(th)) of the QD Laser. How to improve the dot lateral ordering and the dot vertical alignment for realizing lasing from the ground states of the QDs and further reducing the Jth Of the QD lasers are also described in detail. Thirdly based on the optimization of the band engineering design for QD laser and the structure geometry and growth conditions of QDs, a 1W continuous-wave (cw) laser operation of a single composite sheet or vertically coupled In(Ga)As quantum dots in a GaAs matrix (see Fig. 2) and a larger than 10W semiconductor laser module consisted nineteen QD laser diodes are demonstrated. The lifetime of the QD laser with an emitting wavelength around 960nm and 0.613W cw operation at room temperature is over than 3000 hrs, at this point the output power was only reduced to 0.83db. This is the best result as we know at moment. Finally the future trends and perspectives of the QD laser are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excitation-power dependence of hydrostatic pressure coefficients (dE/dP) of InxGa1-xN/InyGa1-yN multiple quantum wells is reported. When the excitation power increases from 1.0 to 33 mW, dE/dP increases from 26.9 to 33.8 meV/GPa, which is an increase by 25%. A saturation behavior of dE/dP with the excitation power is observed. The increment of dE/dP with increasing carrier density is explained by an reduction of the internal piezoelectric field due to an efficient screening effect of the free carriers on the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instabilities of fluid flows have traditionally been investigated by normal mode analysis, i.e. by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In this paper we study the instabilities of two-dimensional Couette flow of a polymeric fluid in the framework of non-modal stability theory rather than normal mode analysis. A power-law model is used to describe the polymeric liquid. We focus on the response to external excitations and initial conditions by examining the pseudospectra structures and the transient energy growths. For both Newtonian and non-Newtonian flows, the results show that there can be a rather large transient growth even though the linear operator of Couette flow has no unstable eigenvalue. The effects of non-Newtonian viscosity on the transient behaviors are examined in this study. The results show that the "shear-thinning/shear-thickening" effect increases/decreases the amplitude of responses to external excitations and initial conditions. (C) 2010 Elsevier B.V. All rights reserved.