926 resultados para External resistors
Resumo:
In this paper, an experiment on tunable resonant cavity enhanced (RCE) photodetector with external cavity is reported. It is the first time to realize a tunable RCE photodetector in China. A tuning range about 10 nm has been obtained and further extension is expected. Corresponding theoretical analysis and discussions are presented. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The scattering matrix method is used to analyze the multiple reflection effect between the laser diode facet and the fiber grating facet by considering the fiber grating external cavity laser diode (FGECL) as a four-mirror cavity laser. When neglecting other important parameters such as butt-coupling distance between the diode and the fiber facets, coupling efficiency, external cavity length, it is shown that low reflectivity is not a crucial factor for the laser characteristics such as SMSR. Experimentally high SMSR fiber grating external cavity laser is fabricated with a relatively large residual facet reflectivity (about 1%), which is coincident with our simulation results.
Resumo:
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.
Resumo:
Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm(2)). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to similar to 150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device.
Resumo:
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germanium at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phosphorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T is explained successfully.
Resumo:
We have conducted numerical studies of ballistic electron transport in a semiconductor II-structure when an external transverse electric field is applied. The device conductance as a function of electron energy and the strength of the transverse electric field is calculated on the basis of tight-binding Green's function formalism. The calculations show that a relatively weak electric field can induce very large decrease in the electron transmission across the structure. When the transverse electric field is sufficiently strong, electrons can hardly be transported through the device. Thus the performance of the device can be greatly improved for it is much easier to control electron transport through the device with an external transverse electric field.
Resumo:
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10(-3)degreesC by temperature control system. The experiments have been carried out and the results obtained-the spectral fine width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.
Resumo:
An external cavity semiconductor laser interferometer used to measure far distance micro-vibration in real time is proposed. In the interferometer, a single longitudinal mode and excellent coherent characteristic grating external cavity semiconductor laser is constructed and acted as a light source and a phase compensator. Its coherent length exceeds 200 meters. The angle between normal and incidence beam of the far object is allowed to change in definite range during the measurement with this interferometer, and this makes the far distance interference measurement easier and more convenient. Also, it is not required to keep the amplitudes of the first and second harmonic components equal, and then the dynamic range is increased. A feedback control system is used to compensate the phase disturbance between the two interference beams introduced by environmental vibration.
Resumo:
In this paper we introduce a new Half-flash analog switch ADC architecture. And we discuss two methods to design the values of the cascaded resistors which generate the reference voltages. Derailed analysis about the effect of analog switches and comparators on reference voltages, and the methods to set the resistor values and correspond;ng voltage errors are given.
Resumo:
In this paper, an experiment on tunable resonant cavity enhanced (RCE) photodetector with external cavity is reported. It is the first time to realize a tunable RCE photodetector in China. A tuning range about 10 nm has been obtained and further extension is expected. Corresponding theoretical analysis and discussions are presented. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A broadly tunable and high-power grating-coupled external cavity laser with a tuning range of more than 200 nm and a similar to 200-mW maximum output power was realized, by utilizing a gain device with the chirped multiple quantum-dot (QD) active layers and bent waveguide structure. The chirped QD active medium, which consists of QD layers with InGaAs strain-reducing layers different in thickness, is beneficial to the broadening of the material gain spectrum. The bent waveguide structure and facet antireflection coating are both effective for the suppression of inner-cavity lasing under large injection current.