949 resultados para uniaxial anisotropy
Resumo:
The in-plane optical anisotropies of a series of GaAs/AlxGa1-xAs single-quantum-well structures have been observed at room temperature by reflectance difference spectroscopy. The measured degree of polarization of the excitonic transitions is inversely proportional to the well width. Numerical calculations based on the envelope function approximation incorporating the effect of C-2v-interface symmetry have been performed to analyze the origin of the optical anisotropy. Good agreement with the experimental data is obtained when the optical anisotropy is attributed to anisotropic-interface structures. The fitted interface potential parameters are consistent with predicted values.
Resumo:
Two sensitive polarized spectroscopies, reflectance difference spectroscopy and photocurrent difference spectroscopy, are used to study the characteristic of the in-plane optical anisotropy in the symmetric and the asymmetric (001) GaAs/Al(Ga)As superlattices (SLs). The anisotropy spectra of the symmetric and the asymmetric SLs show significant difference: for symmetric ones, the anisotropies of the 1HH-->1E transition (1H1E) and 1L1E are dominant, and they are always approximately equal and opposite; while for asymmetric ones, the anisotropy of 1H1E is much less than that of 1L1E and 2H1E, and the anisotropy of 3H2E is very strong. The calculated anisotropy spectra within the envelope function model agree with the experimental results, and a perturbation approach is used to understand the role of the electric field and the interface potential in the anisotropy. (C) 2001 American Institute of Physics.
Resumo:
A trilayer asymmetric superlattice, Si/Si1-xGex/Si1-yGey, is proposed, in which the broken inversion symmetry makes the microstructure optically biaxial; in particular, inequivalent interfaces in this heterostructure may cause a polarization ratio as large as about 2.5% in the absence of an external field. The electronic structure and absorption spectra for two types of trilayer superlattice with different parameters are calculated by use of the tight-binding model; the findings indicate the importance of the carrier confinement for the anisotropy value. The effect of external electric field on the optical anisotropy for such structures has also been discussed, and a Pockels coefficient of 10-9 cm V-1 estimated.
Resumo:
InAs and InxGa1-xAs (x = 0.2 and 0.5) self-organized quantum dots (QDs) were fabricated on GaAs(0 0 1) by molecular beam epitaxy (MBE) and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), acid photoluminescence polarization spectrum (PLP). Both structural and optical properties of InxGa1-xAs QD layer are apparently different from those of InAs QD layer. AFM shows that InxGa1-xAs QDs tend to be aligned along the [1 (1) over bar 0] direction, while InAs QDs are distributed randomly. TEM demonstrates that there is strain modulation along [1 1 0] in the InxGa1-xAs QD layers. PLP shows that In0.5Ga0.5As islands present optical anisotropy along [1 1 0] and [1 (1) over bar 0] due to structural and strain field anisotropy for the islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the spontaneous emission of polarized excitons in the GaInP/AlGaInP vertical-cavity surface-emitting lasers from 50 K to room temperature. It is observed that the spontaneous emission peak enters and leaves the resonant regime. At the resonant regime, the emission intensities of the perpendicularly and horizontally polarized excitons are enhanced and their proportions are different from that in nonresonant regime. These experimental results are explained by the dressed exciton theory of the semiconductor microcavity device. Based on this theory, the intensity enhancement and the polarization dependence are understood as cooperative emission and the microcavity anisotropy. (C) 2000 American Institute of Physics. [S0021-8979(00)05315-9].
Resumo:
The strong in-plane optical anisotropy of (001) semi-insulating GaAs, which comes from the submicron region under the surface, has been observed by reflectance difference spectroscopy. The optical anisotropy can be explained by the anisotropic strain that is introduced by the asymmetric distribution of 60 degrees dislocations during surface polishing. The simulated spectra reproduce the line shape of the experimental ones. The simulations show that the anisotropic strain is typically about 2.3x10(-4). (C) 2000 American Institute of Physics. [S0021-8979(00)01315-3].
Resumo:
Self-ordering of quasi-quantum wires in multilayer InAlAs/AlGaAs nanostructures grown by molecular beam epitaxy is identified. The chain-like structures along the [1 (1) over bar 0] Of direction formed by coalescence of quantum dots were observed. The photoluminescence of the nanostructures is partially polarized along the [1 (1) over bar 0] direction. The polarization ratio depends on the wavelength and the maximum polarization is on the lower energy side. The maximum polarization increases from 0.32 at 10 K to 0.53 at 100 K, and the energy position of maximum polarization moves near to PL peak with increasing temperature. They are all related to the existence of isolated islands and quasi-quantum wires in our sample. This result provides a novel approach to produce narrow quantum wires. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We report on high-frequency (300-700 GHz) ferromagnetic resonance (HF-FMR) measurements on cobalt superparamagnetic particles with strong uniaxial effective anisotropy. We derive the dynamical susceptibility of the system on the basis of an independent-grain model by using a rectangular approach. Numerical simulations give typical line shapes depending on the anisotropy, the gyromagnetic ratio, and the damping constant. HF-FMR experiments have been performed on two systems of ultrafine cobalt particles of different sizes with a mean number of atoms per particles of 150 +/- 20 and 310 +/- 20. In both systems, the magnetic anisotropy is found to be enhanced compared to the bulk value, and increases as the particle size decreases, in accordance with previous determinations from magnetization measurements. Although no size effect has been observed on the gyromagnetic ratio, the transverse relaxation time is two orders of magnitude smaller than the bulk value indicating strong damping effects, possibly originating from surface spin disorders.
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xCrxN4 (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. After nitrogenation the relative volume expansion of each nitride is around between 5% and 7%. The nitrogenation results in a good improvement in the Curie temperature, the saturation magnetization and anisotropy fields at 4.2 K, and room temperature for R3Fe29-xCrxN4. Magnetohistory effects of R3Fe29-xCrxN4 and R3Fe29-xCrx (R=Nd and Sm) are observed in a low field of 0.04 T. First order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of 2.8 T at 4.2 K. After nitrogenation, the easy magnetization direction of Sm3Fe24.0Cr5.0 is changed from the easy-cone structure to the uniaxial. The good intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance hard magnets. (C) 1998 American Institute of Physics.
Resumo:
The steplike density of states obtained from reflectance-difference spectroscopy demonstrates that ultrathin InAs layers should be regarded as two-dimensional quantum wells rather than isolated clusters, even for the sample with only 1/3 monolayer InAs in (311)-oriented GaAs. The degree of anisotropy is within the intrinsic anisotropy of (311)-oriented ultrathin quantum wells, indicating that there is little structural or strain anisotropy in the InAs islands. (C) 1998 Elsevier Science B.V.
Resumo:
A systematic investigation of nitrides R3F29-xCrxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The nitrogen concentration in the nitride R3Fe29-xCrxNy was determined to be y = 4. Nitrogenation leads to a relative volume expansion of about 5.3%. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. In average, the increase of Curie temperature upon nitrogenation is about 200 K, compared with its parent compound. The nitrogenation also results in a remarkable improvement in the saturation magnetization and anisotropy fields for R3Fe29-x CrxN4 at 4.2 K and room temperature, compared with their parent compounds. A spin reorientation of Nd3Fe24.5Cr4.5N4 occurs at around 368 K, which is 138 K higher than that of Nd3F24.5Cr4.5. Magnetohistory effects of R3Fe29-xCrxN4 (R = Nd and Sm) are observed in a low field of 0.04 T. First-order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of around 3.0 T at 4.2 K. After nitrogenation the easy magnetization direction of Sm3Fe24.0C5.0 is changed from the easy-cone structure to the uniaxial. The excellent intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance permanent magnets.
Resumo:
In-plane optical anisotropy which comes from the heavy hole and the light hole transitions in an InAs monolayer inserted in (311)-oriented GaAs matrix is observed by reflectance difference spectroscopy. The observed steplike density of states demonstrates that the InAs layer behaves like a two-dimensional quantum well rather than isolated quantum dots. The magnitude of the anisotropy is in good agreement with the intrinsic anisotropy of (311) orientation quantum wells, indicating that there is little structural or strain anisotropy of the InAs layer grown on (311)-oriented GaAs surface.
Resumo:
The interface properties of GaNxAs1-x/GaAs single-quantum well is investigated at 80 K by reflectance difference spectroscopy. Strong in-plane optical anisotropies (IPOA) are observed. Numerical calculations based on a 4 band K . P Hamiltonian are performed to analyze the origin of the optical anisotropy. It is found that the IPOA can be mainly attributed to anisotropic strain effect, which increases with the concentration of nitrogen. The origin of the strain component epsilon(xy) is also discussed.
Resumo:
We investigate the photoinduced anisotropy of a photochromic material of pyrrylfulgide/PMMA films. It is proven that when the film is illuminated with a linear polarization light, an optical axis that has the same polarization as the excitation light could be induced in the film. A matrix of light spots with different polarizations is recorded on the pyrrylfulgide/PMMA film. When reading out with non-polarization light, the matrix of light spots shows no information of patterns. However, when reading out with different linear polarization lights, different patterns could be observed. The experiment confirms that the pyrrylfulgide/PMMA film could be used to record two different polarization patterns in a matrix of spots. This property may be applied in camouflage technology.