888 resultados para Mathematical argumentation
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
Intrinsically fuzzy morphological erosion and dilation are extended to a total of eight operations that have been formulated in terms of a single morphological operation--biased dilation. Based on the spatial coding of a fuzzy variable, a bidirectional projection concept is proposed. Thus, fuzzy logic operations, arithmetic operations, gray-scale dilation, and erosion for the extended intrinsically fuzzy morphological operations can be included in a unified algorithm with only biased dilation and fuzzy logic operations. To execute this image algebra approach we present a cellular two-layer processing architecture that consists of a biased dilation processor and a fuzzy logic processor. (C) 1996 Optical Society of America
Resumo:
A more powerful tool for binary image processing, i.e., logic-operated mathematical morphology (LOMM), is proposed. With LOMM the image and the structuring element (SE) are treated as binary logical variables, and the MULTIPLY between the image and the SE in correlation is replaced with 16 logical operations. A total of 12 LOMM operations are obtained. The optical implementation of LOMM is described. The application of LOMM and its experimental results are also presented. (C) 1999 Optical Society of America.
Resumo:
Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America
Resumo:
Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
An optoelectronic implementation based on optical neighborhood operations and electronic nonlinear feedback is proposed to perform morphological image processing such as erosion, dilation, opening, closing and edge detection. Results of a numerical simulation are given and experimentally verified.
Resumo:
The experimental portion of this thesis tries to estimate the density of the power spectrum of very low frequency semiconductor noise, from 10-6.3 cps to 1. cps with a greater accuracy than that achieved in previous similar attempts: it is concluded that the spectrum is 1/fα with α approximately 1.3 over most of the frequency range, but appearing to have a value of about 1 in the lowest decade. The noise sources are, among others, the first stage circuits of a grounded input silicon epitaxial operational amplifier. This thesis also investigates a peculiar form of stationarity which seems to distinguish flicker noise from other semiconductor noise.
In order to decrease by an order of magnitude the pernicious effects of temperature drifts, semiconductor "aging", and possible mechanical failures associated with prolonged periods of data taking, 10 independent noise sources were time-multiplexed and their spectral estimates were subsequently averaged. If the sources have similar spectra, it is demonstrated that this reduces the necessary data-taking time by a factor of 10 for a given accuracy.
In view of the measured high temperature sensitivity of the noise sources, it was necessary to combine the passive attenuation of a special-material container with active control. The noise sources were placed in a copper-epoxy container of high heat capacity and medium heat conductivity, and that container was immersed in a temperature controlled circulating ethylene-glycol bath.
Other spectra of interest, estimated from data taken concurrently with the semiconductor noise data were the spectra of the bath's controlled temperature, the semiconductor surface temperature, and the power supply voltage amplitude fluctuations. A brief description of the equipment constructed to obtain the aforementioned data is included.
The analytical portion of this work is concerned with the following questions: what is the best final spectral density estimate given 10 statistically independent ones of varying quality and magnitude? How can the Blackman and Tukey algorithm which is used for spectral estimation in this work be improved upon? How can non-equidistant sampling reduce data processing cost? Should one try to remove common trands shared by supposedly statistically independent noise sources and, if so, what are the mathematical difficulties involved? What is a physically plausible mathematical model that can account for flicker noise and what are the mathematical implications on its statistical properties? Finally, the variance of the spectral estimate obtained through the Blackman/Tukey algorithm is analyzed in greater detail; the variance is shown to diverge for α ≥ 1 in an assumed power spectrum of k/|f|α, unless the assumed spectrum is "truncated".
Resumo:
196 p.
Resumo:
Mathematical models for heated water outfalls were developed for three flow regions. Near the source, the subsurface discharge into a stratified ambient water issuing from a row of buoyant jets was solved with the jet interference included in the analysis. The analysis of the flow zone close to and at intermediate distances from a surface buoyant jet was developed for the two-dimensional and axisymmetric cases. Far away from the source, a passive dispersion model was solved for a two dimensional situation taking into consideration the effects of shear current and vertical changes in diffusivity. A significant result from the surface buoyant jet analysis is the ability to predict the onset and location of an internal hydraulic jump. Prediction can be made simply from the knowledge of the source Froude number and a dimensionless surface exchange coefficient. Parametric computer programs of the above models are also developed as a part of this study. This report was submitted in fulfillment of Contract No. 14-12-570 under the sponsorship of the Federal Water Quality Administration.