989 resultados para Auto-construcción
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.
Resumo:
El presente trabajo es una investigación en curso. Una fuente de dificultades didácticas es la interpretación geométrica de la derivada, en donde la recta tangente no se considera como objeto de estudio. Nuestro planteamiento es que al construir la recta tangente desde una perspectiva variacional puede servir como una introducción a la derivada desde un punto de vista gráfico, lo cual implica también un rediseño del Discurso Matemático Escolar. Utilizamos la teoría de la Socioepistemología, en la cual se plantea que el uso de herramientas matemáticas para resolver actividades organizadas intencionalmente con la intención de resolver un problema, son una práctica, normadas por una práctica social. El escenario histórico nos ha servido para reconocer la práctica de la tangente variacional. Actualmente hemos implementado un método para obtener nuestros datos el cual nos servirá para que un futuro próximo podamos analizarlos y obtener conclusiones.
Resumo:
En este trabajo de investigación se presenta una guía de aprendizaje construida para utilizar una diversidad de herramientas tecnológicas y matemáticas como parte de una estrategia didáctica, estructurada en función de las necesidades de los estudiantes, donde se cuenta con una variedad de problemas contextuales y factibles, considerando una sociedad en crisis y cuya repercusión se proyecta en el proceso educativo. En la aplicación de ésta, se puede apreciar el hecho de la intencionalidad para utilizar las herramientas, las construcciones de conceptos estadísticos, la motivación del trabajo en equipo y los argumentos presentados por los estudiantes para dar significado a la media aritmética y la noción de variabilidad; como logran darle sentido a la toma de decisiones en forma empírica, basados en los efectos que presenta la inestabilidad de los datos.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
En esta investigación desarrollada desde la perspectiva teórica de la aproximación socioepistemológica, se presenta, la producción y puesta en escena de una secuencia basada en la ingeniería didáctica. De manera específica, este trabajo indaga sobre qué alternativas pueden ser factibles para la construcción escolar del significado de los números complejos, bajo la hipótesis de que su significado puede ser construido a través del proceso de convención matemática. El análisis de la producción de los estudiantes, al trabajar una secuencia de actividades diseñada por nosotros en base a la hipótesis anterior, da evidencia de que a pesar que los estudiantes insistían en que “las raíces cuadradas de números negativos no existen”, nuestra secuencia los indujo a operar con ellos.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
Este trabajo centra su atención en la construcción de saberes matemáticos en un ambiente de colaboración, en el que se privilegia la interacción entre los participantes, la confrontación y la negociación. Se hace una descripción de la problemática que se vive en el aprendizaje de las matemáticas y de la necesidad de innovar a través de situaciones donde el contenido matemático es relevante para el alumno y la sociedad. De igual modo se hace una descripción sucinta acerca de que esta manera de construir saberes incluye el desarrollo de competencias matemáticas, las consideradas en el plan de estudio de educación secundaria 2006. Esta descripción contiene actividades para un taller considerando el eje sobre el manejo de la información y una versión de principios para orientar su ejecución.
Resumo:
Uno de los objetivos del presente trabajo es detectar los motivos por los cuales el concepto de promedio aritmético está tan arraigado en el estudiante que no puede desprenderse de él y lo interpola a otros ámbitos del quehacer matemático, específicamente al probabilístico. Se busca entender, mediante la línea de investigación conocida como la construcción social del conocimiento matemático, por qué los alumnos tienen problemas en aceptar y reconocer al valor esperado, conocido también como media o esperanza matemática, como un promedio en un nuevo escenario con nuevas características.
Resumo:
La enseñanza y el aprendizaje formalizado de los números irracionales en la formación inicial de profesores de secundaria son problemáticos. Un análisis histórico y epistemológico de la noción de número irracional, sirve de base para enmarcar un estudio empírico, con estudiantes para profesor, que indaga el proceso de construcción de la noción de cardinalidad del conjunto de los números irracionales y la densidad de en R\Q en R. El estudio se realiza por medio de algunos elementos teóricos del enfoque ontosemiótico del conocimiento de y de la instrucción matemáticos. La identificación, por parte del estudiante, de la cardinalidad de conjuntos infinitos, hace posible la emergencia de fenómenos relativos a los cardinales transfinitos, determinándose diferentes tipos de errores y conflictos cognitivos.
Resumo:
Este documento centra su atención en la noción de variable como elemento básico de la construcción de conceptos relacionados a fenómenos de variación y cambio. Partimos de que la variable no es una idea construida como un objeto o proceso aislado, sino que surge necesariamente de la relación de al menos dos entidades cambiantes que en la mayoría de los casos una de ellas es la variable tiempo. Pretendemos realizar el estudio de la variable desde diferentes dimensiones: la epistemológica, la cognitiva, la didáctica y la sociocultural, para poder tener elementos que nos permitan determinar qué procesos favorecen la construcción de esta noción y asimismo realizar su caracterización.
Resumo:
En la primera parte del artículo el autor muestra que las fórmulas de volumen del prisma, pirámide y esfera no se justifican adecuadamente a los estudiantes. Esta afirmación la sustenta a partir de un análisis sucinto de lo que aparece en los textos que tradicionalmente dominan la enseñanza y de su experiencia como docente. En la segunda parte da a conocer una propuesta para construir las fórmulas del volumen de un prisma y una pirámide cualquiera; del área del círculo y la semiesfera y con base en esta última, obtener la del volumen de la esfera. Termina con la descripción de las ventajas de la estrategia.
Resumo:
La intención de la ponencia está en la dirección de presentar un estudio de las prácticas que ejercen los actores en un diseño de aprendizaje puesto en escena en el aula de matemáticas. El diseño referido se centra, no en los contenidos matemáticos en sí o en las producciones de los participantes, sino en las prácticas sociales ejercidas por los participantes utilizando herramientas y situadas en un contexto social; en este caso las prácticas sociales de modelación del enfriamiento de un líquido. Reportamos la narración de la puesta en escena en el aula de matemáticas de un diseño de aprendizaje basado en prácticas sociales de modelación de fenómenos: “Lo exponencial: la ley de enfriamiento de Newton”. Aquí narramos como los participantes construyen lo exponencial como herramienta al intentar comprender y predecir lo que sucede al enfriarse un líquido.
Resumo:
Se pone de manifiesto la necesidad de que el profesor gestione la construcción de significado en el aula y lo haga a partir de las interpretaciones que pueda inferir de los aportes verbales de los estudiantes durante el proceso. Se muestra que la construcción de significado de una definición que un profesor podría despachar muy rápidamente (señalando un error, repitiendo la definición y pidiendo a los estudiantes que se fijen bien en ella para reformular la representación de la situación en la que el objeto definido se pone en juego), está lejos de ser un asunto baladí. En el segundo ejemplo que se presenta es posible ver cómo la gestión del profesor en pro de la construcción de significado de un objeto geométrico (en este caso, el enunciado del Teorema Localización de Puntos), no se agota en el momento en que se enuncia y demuestra el Teorema sino que se requiere también en momentos en que se usa en el marco de la resolución de un nuevo problema.
Resumo:
Conocimiento es la información sin uso, el saber es la acción deliberada para hacer del conocimiento un objeto útil frente a una situación problemática. De donde se deduce que el aprendizaje es una manifestación de la evolución del conocimiento en saber. Por lo que el aprendizaje consiste en dar la respuesta correcta antes de la situación concreta.
Resumo:
Se presenta una construcción rigurosa de la función exponencial con base en aproximaciones decimales de números reales y utilizando herramientas relativamente simples de la teoría de sucesiones numéricas. Visto desde la óptica de un docente de secundaria, esta construcción es la formalización de la construcción intuitiva que siempre hemos enseñado a los muchachos. En la primera parte se repasa la completitud de R y sus consecuencias, así como algunas nociones básicas de sucesiones. La segunda parte prsenta paso a paso, la construcción de la función exponencial con exponente racional y en la tercera parte se extiende esta definición a exponentes reales. La presentación es completada con ejercicios que le ayuden al lector a profundizar un poco más en el tema, de acuerdo con los conocimientos previos. El trabajo esta dirigido a profesores y futuros profesores de secundaria. Se ha evitado en lo posible el uso de herramientas matemáticas sofisticadas, con el fin de hacer la lectura apropiada a la mayor audiencia posible.