806 resultados para Failure of management oversight


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable prediction of long-term medical device performance using computer simulation requires consideration of variability in surgical procedure, as well as patient-specific factors. However, even deterministic simulation of long-term failure processes for such devices is time and resource consuming so that including variability can lead to excessive time to achieve useful predictions. This study investigates the use of an accelerated probabilistic framework for predicting the likely performance envelope of a device and applies it to femoral prosthesis loosening in cemented hip arthroplasty.
A creep and fatigue damage failure model for bone cement, in conjunction with an interfacial fatigue model for the implant–cement interface, was used to simulate loosening of a prosthesis within a cement mantle. A deterministic set of trial simulations was used to account for variability of a set of surgical and patient factors, and a response surface method was used to perform and accelerate a Monte Carlo simulation to achieve an estimate of the likely range of prosthesis loosening. The proposed framework was used to conceptually investigate the influence of prosthesis selection and surgical placement on prosthesis migration.
Results demonstrate that the response surface method is capable of dramatically reducing the time to achieve convergence in mean and variance of predicted response variables. A critical requirement for realistic predictions is the size and quality of the initial training dataset used to generate the response surface and further work is required to determine the recommendations for a minimum number of initial trials. Results of this conceptual application predicted that loosening was sensitive to the implant size and femoral width. Furthermore, different rankings of implant performance were predicted when only individual simulations (e.g. an average condition) were used to rank implants, compared with when stochastic simulations were used. In conclusion, the proposed framework provides a viable approach to predicting realistic ranges of loosening behaviour for orthopaedic implants in reduced timeframes compared with conventional Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent efforts towards the development of the next generation of large civil and military transport aircraft within the European community have provided new impetus for investigating the potential use of composite material in the primary structure. One concern in this development is the vulnerability of co-cured stiffened structures to through-thickness stresses at the skin-stiffener interfaces particularly in stiffener runout regions. These regions are an inevitable consequence of the requirement to terminate stiffeners at cutouts, rib intersections or other structural features which interrupt the stiffener load path. In this respect, thickerskinned components are more vulnerable than thin-skinned ones. This work presents an experimental and numerical study of the failure of thick-sectioned stiffener runout specimens loaded in uniaxial compression. The experiments revealed that failure was initiated at the edge of the runout and propagated across the skin-stiffener interface. High frictional forces at the edge of the runout were also deduced from a fractographic analysis and it is postulated that these forces may enhance the fracture toughness of the specimens. Finite element analysis using an efficient thick-shell element and the Virtual Crack Closure Technique was able to qualitatively predict the crack growth characteristics for each specimen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this preliminary study the initial failure of a bolted composite joint was investigated. The results of an experimental program using two simple beams bolted together with offset loading are presented. These test specimens were used to simulate a typical skin-spar attachment in a composite wing undergoing hydraulic shock. Initial failure was found to be due to a prying force induced at the outer sections of the joint leading to transverse shear failure.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radical cations He-2(+) (H2O)(2)(+), and (NH3)(2)(+) with two-center three-electron A-A bonds are investigated at the configuration interaction (CI), accurate Kohn-Sham (KS), generalized gradient approximation (GGA), and meta-GGA levels. Assessment of seven different GGA and six meta-GGA methods shows that the A(2)(+) systems remain a difficult case for density functional theory (DFT). All methods tested consistently overestimate the stability of A(2)(+): the corresponding D-e errors decrease for more diffuse valence densities in the series He-2(+) > (H2O)(2)(+) > (NH3)(2)(+). Upon comparison to the energy terms of the accurate Kohn-Sham solutions, the approximate exchange functionals are found to be responsible for the errors of GGA-type methods, which characteristically overestimate the exchange in A(2)(+). These so-called exchange functionals implicitly use localized holes. Such localized holes do occur if there is left-right correlation, i.e., the exchange functionals then also describe nondynamical correlation. However, in the hemibonded A(2)(+) systems the typical molecular (left-right, nondynamical) correlation of the two-electron pair bond is absent. The nondynamical correlation built into the exchange functionals is then spurious and yields too low energies.