926 resultados para 3Helium polarized MRI
Resumo:
Spin-polarized tunneling through a diluted magnetic semiconductor quantum dot embedded in a tunneling barrier is investigated using the Bardeen transfer Hamiltonian. The tunneling current oscillates with an increasing magnetic field for a fixed bias. Many peaks are observed with an increasing external bias under a fixed magnetic field. Spin polarization of the tunneling current is tuned by changing the external bias under a weak magnetic field.
Resumo:
InAs quantum wires (QWRs) have been fabricated on the InP(001), which has been evidenced by TEM and polarized photoluminescence measurements (PPL). The monlayer-splitting peaks (MSPs) in the PL spectrum of InAs QWRs can be clearly observed at low temperature measurements. Supposing a peak-shift of MSP identical to that of bulk material, we obtain the thermal activation energies of up to 5 MSPs. The smaller thermal activation energies for the MSPs of higher energy lead to the fast red-shift of PL peak as a whole.
Resumo:
Nonpolar (1120) a-plane GaN thin films were grown on r-plane (1102) sapphire substrates by low-pressure metal organic chemical vapor deposition (MOCVD). The stress characteristics of the a-plane GaN films were investigated by means of polarized Raman scattering spectra in backscattering configurations. The experimental results show that there are strong anisotropic in-plane stresses within the epitaxial a-plane GaN films by calculating the corresponding stress tensors. The temperature dependence of Raman scattering spectra was studied in the range from 100 K to 550 K. The measurements reveal that the Raman phonon frequencies decrease with increasing temperature. The temperature at which nonpolar a-plane GaN films are strain free is discussed. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We study electron transport through an Aharonov-Bohm (AB) interferometer with a noninteracting quantum dot in each of its arms. Both a magnetic flux phi threading through the AB ring and the Rashba spin-orbit (SO) interaction inside the two dots are taken into account. Due to the existence of the SO interaction, the electrons flowing through different arms of the AB ring will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor, as well as the influence of the magnetic flux, will induce various interesting interference phenomena. We show that the conductance and the local density of states can become spin polarized by tuning the magnetic flux and the Rashba interaction strength. Under certain circumstances, a pure spin-up or spin-down conductance can be obtained when a spin-unpolarized current is injected from the external leads. Therefore, the electron spin can be manipulated by adjusting the Rashba spin-orbit strength and the structure parameters. (c) 2006 American Institute of Physics.
Resumo:
The authors investigate the spin-polarized transport properties of a two-dimensional electron gas in a n-type diluted magnetic narrow gap semiconductor quantum well subjected to perpendicular magnetic and electric fields. Interesting beating patterns in the magnetoresistance are found which can be tuned significantly by varying the electric field. A resonant enhancement of spin-polarized current is found which is induced by the competition between the s-d exchange interaction and the Rashba effect [Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984)]. (c) 2006 American Institute of Physics.
Resumo:
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.
Resumo:
We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.
Resumo:
The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) made with a semimagnetic semiconductor is studied theoretically. The calculated spin-polarized current and polarization degree are in agreement with recent experimental results. It is predicted that the polarization degree can be modulated continuously from + 1 to - 1 by changing the external voltage such that the quasi-confined spin-up and spin-down energy levels shift downwards from the Fermi level to the bottom of the conduction band. The RTD with low potential barrier or the tunneling through the second quasi-confined state produces larger spin-polarized current. Furthermore a higher magnetic field enhances the polarization degree of the tunneling current. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fifth-order corrected expressions for the fields of a radially polarized Laguerre-Gauss (R-TEMn1) laser beams are derived based on perturbative Lax series expansion. When the order of Laguerre polynomial is equal to zero, the corresponding beam reduces to the lowest-order radially polarized beam (R-TEM01). Simulation results show that the accuracy of the fifth-order correction for R-TEMn1 depends not only on the diffraction angle of the beam as R-TEM01 does, but also on the order of the beam. (c) 2007 Optical Society of America.
Resumo:
A radially polarized beam focused by a high-numerical-aperture (NA) objective has a strong longitudinal and nonpropagating electric field in the focal region, which implies that it is suitable for axial optical trapping. In this paper, we use the vectorial diffraction integral to represent the field distribution of the radially polarized beam focused by a high-NA objective and then employ the T-matrix method to compute the radiation forces on spherical particles. Effects of different parameters, such as the size of the sphere, the inner radius of the radially polarized beam, and the NA of the objective, on the radiation forces are presented.
Resumo:
Azimuthally polarized beams, focused by a high-numerical-aperture (NA) objective lens, form a hollow intensity distribution near the focus, which is appropriate for trapping low-refractive-index particles, in contrast to common linearly polarized or radially polarized beams. In this paper, the field distribution of the azimuthally polarized beam focused by a high-NA objective is described by the vectorial diffraction integral, and then the radiation forces on spherical particles with different parameters such as radius and refractive index are calculated by the T-matrix method. Numerical results show that the azimuthally polarized beam not only can steadily trap low-refractive-index particles at the focus center but also can trap multiple high-refractive-index particles around the focus center by virtue of the hollow-ring configuration. The range of the sizes of low-refractive-index particles that can be trapped steadily are presented, corresponding to different parameters such as the NA of the objective and the relative refractive index, based on which the NA of the objective can be selected to trap the appropriate size of particles. (C) 2009 Optical Society of America
Resumo:
An accurate description of a radially polarized fundamental Gaussian beam is presented on the basis of complex-source-point spherical waves (CSPSWs). In contrast to other descriptions based on the perturbative Lax series, the expressions for the electromagnetic field components of this description have explicit and simple mathematical forms. Numerical calculations show that both paraxial and fifth-order corrected beam descriptions have large relative error when the diffraction angle is large, while the accurate description based on the CSPSW approach proposed here can give field expressions which satisfy Maxwell's equations with great accuracy.