921 resultados para spherical quantum dot
Resumo:
High-power and broadband quantum-dot (QD) superluminescent light-emitting diodes are realized by using a combination of self-assembled QDs with a high density, large inhomogeneous broadening, a tapered angled pump region, and etched V groove structure. This broad-area device exhibits greater than 70-nm 3-dB bandwidth and drive current insensitive emission spectra with 100-mW output power under continuous-wave operation. For pulsed operation, greater than 200-mW output power is obtained.
Resumo:
The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.
Resumo:
We report the effects of accumulated strain by stacking on the surface and optical properties of stacked 1.3 mu m InAs/GaAs quantum dot (QD) structures grown by MOCVD. It is found that the surface of the stacked QD structures becomes more and more undulated with stacking, due to the increased strain in the stacked QD structures with stacking. The photoluminescence intensity from the QD structures first increases as the stacking number increases from 1 to 3 and then dramatically decreases as it further increases, implying a significant increase in the density of crystal defects in the stacked QD structures due to the accumulated strain. Furthermore, we demonstrate that the strain can be reduced by simply introducing annealing steps just after growing the GaAs spacers during the deposition of the stacked QD structures, leading to significant improvement in the surface and optical properties of the structures. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Excitation power-dependent micro-photoluminescence spectra and photon-correlation measurement are used to study the optical properties and photon statistics of single InAs quantum dots. Exciton and biexciton emissions, whose photoluminescence intensities have linear and quadratic excitation power dependences, respectively, are identified. Under pulsed laser excitation, the zero time delay peak of second order correlation function corresponding to exciton emission is well suppressed, which is a clear evidence of single photon emission.
Resumo:
In this letter, we have demonstrated continuous-wave single-mode operation of 1.3-mu m InAs-GaAs quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) with p-type modulation-doped QD active region from 20 degrees C to 60 degrees C. The highest output power of 0.435mW and lowest threshold current of 1.2 mA under single-mode operation are achieved. The temperature-dependent output characteristics of QD-VCSELs are investigated. Single-mode operation with a sidemode suppression ratio of 34 dB is observed at room temperature. The critical size of oxide aperture for single-mode operation is discussed.
Resumo:
We present the fabrication of 1.3 mu m waveband p-doped InAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) with an extremely simple process. The continuous-wave saturated output power of 1.1 mW with a lasing wavelength of 1280 nm is obtained at room temperature. The high-speed modulation characteristics of p-doped QD VCSELs of two different oxide aperture sizes are investigated and compared. The maximum 3 dB modulation bandwidth of 2.5 GHz can be achieved at a bias current of 7 mA for a p-doped QD VCSEL with an oxide aperture size of 10 mu m in the small signal frequency response measurements. The crucial factors for the 3 dB bandwidth limitation are discussed according to the parameters' extraction from frequency response.
Resumo:
We report an experimental and theoretical study of maximum modal gain of p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers. The maximum modal gain of the QD laser with five stacks of QDs is as high as 17.5 cm(-1) which is the same as that of the undoped laser with identical structures. The expression of the maximum modal gain is derived and it is indicated that p-doping has no effect to the maximum modal gain. We theoretically calculated the maximum modal gain of the QD lasers and the result is in a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial to achieving a greater maximum modal gain that leads to lower threshold current density and higher differential modal gain, which is good for the application of p-doped 1.3 mu m InAs/GaAs QD lasers in optical communications systems.
Resumo:
The characteristics of a resonant cavity-enhanced InGaAs/GaAs quantum-dot n-i-n photodiode with only a bottom distributed Bragg reflector used as the cavity mirror, are reported. To suppress the dark current, an AlAs layer is inserted into the device structure as the blocking layer. It turns out that the structure still possesses the resonant coupling nature, and makes Rabi splitting discernible in the photoluminescence spectra. The measured responsivity spectrum of the photocurrent shows a peak at lambda = 1030 nm, and increases rapidly as the bias voltage increases. A peak responsivity of 0.75 A/W, or equivalently an external quantum efficiency of 90.3%, is obtained at V-bias = -1.4 V.
Resumo:
The photoluminescence correlation from a single CdSe nanocrystal under pulsed excitation is studied, and a single photon is realized at wavelength 655 nm at room temperature. The single colloidal CdSe quantum dot is prepared on a SiO2/silicon surface by a drop-and-drag technique. The long-term stability of the single-photon source is investigated; it is found that the antibunching effect weakens with excitation time, and the reason for the weakening is attributed to photobleaching. The lifetimes of photoluminescence from a single quantum dot are analyzed at different excitation times. By analyzing the probability distribution of on and off times of photoluminescence, the Auger assisted tunneling and Auger assisted photobleaching models are applied to explain the antibunching phenomenon.
Resumo:
Electrically driven single photon source based on single InAs quantum dot (QDs) is demonstrated. The device contains InAs QDs within a planar cavity formed between a bottom AlGaAs/GaAs distributed Bragg reflector (DBR) and a surface GaAs-air interface. The device is characterized by I-V curve and electroluminescence, and a single sharp exciton emission line at 966nm is observed. Hanbury Brown and Twiss (HBT) correlation measurements demonstrate single photon emission with suppression of multiphoton emission to below 45% at 80K
Resumo:
We have fabricated 1.3-mu m InAs-GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-mu m InAs-GaAs QD lasers, but it does not, increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm(-1)). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.
Resumo:
The antibunching and blinking from a single CdSe/ZnS nanocrystal with an emission wavelength of 655 nm were investigated under different excitation powers. The decay process of the photoluminescence from nanocrystal was fitted into a stretched exponential, and the small lifetime and the small stretching exponent under a high excitation power were explained by using nonradiative multi-channel model. The probability of distributions for off-times from photoluminescence intermittence was fitted into the power law, and the power exponents were explained by using a tunneling model. For higher excitation power, the Auger-assisted tunneling model takes effect, where the tunneling rate increases and the observed lifetime decreases. For weak excitation power, the electron directly tunnels between the nanocrystal and trapping state without Auger assistance. The correlation between antibunching and blinking from the same nanocrystal was analyzed.
Resumo:
We have investigated the conductance of a quantum dot system suffering an anti-symmetric ac gate voltage which induces the transition between dot levels in the linear regime at zero temperature in the rotating wave approximation. Interesting Fano resonances appear on one side of the displaced resonant tunnelling peaks for the nonresonant case or the peak splitting for the resonant case. The line shape of conductance (vs Fermi energy) near each level of the quantum dot can be decomposed into two profiles: a Breit-Wigner peak and a Fano profile, or a Breit-Wigner peak and a dip in both cases.
Resumo:
We report the fabrication and the measurement of microcavities whose optical eigenmodes were discrete and were well predicted by using the model of the photonic dot with perfectly reflected sidewalls. These microcavities were consisted of the semiconductor pillar fabricated by the simple wet-etched process and successive metal coating. Angle-resolved photoluminescence spectra demonstrate the characteristic emission of the corresponding eigenmodes, as its pattern revealed by varying both polar (0) and azimuthal (45) angles. It is shown that the metal-coated sidewalls can provide an efficient way to suppress the emission due to the leaking modes in these pillar microcavities.
Resumo:
We have studied the Fano resonance in photon-assisted transport through a quantum dot. Both the coherent current and the spectral density of shot noise have been calculated. It is predicted that the shape of the Fano profile will also appear in satellite peaks. It is found that the variations of Fano profiles with the strengths of nonresonant transmissions are not synchronous in absorption and emission sidebands. The effect of interference on photon-assisted pumped current has also been investigated. We further predict the current and spectral density of shot noise as a periodic function of the phase, which exhibits an intrinsic property of resonant and nonresonant channels in the structures.