728 resultados para Geography - Mathematics
Resumo:
Assessments of students in primary and secondary education are debated among practitioners, policy-makers, and parents. In some countries, assessment scores serve a criterion for passage between levels of education, for example, from secondary school to post-secondary education. Those practices are often traditions and while they come under criticism, they are a long-accepted part of the educational practices within a country. In those countries, the students’ assessment and examination scores are posted in public places or published in local news media. In other countries, assessments are used for the periodic checks on individual student progress. The results of assessments may be used for rating schools, and in some cases, they are used for evaluating the performance of teachers. Assessments are used less often to analyze student performance and make judgments regarding the performance of the curriculum. Even less often, assessments serve to critically establish strategies for the improvement of student learning and educational practices. The ends on the continuum of the assessment debate often focus on the opportunities that assessments present to improve education on one end. The other end is that assessments serve as a major distraction from the important work of teachers by removing classroom room time from instruction. The debate on those issues continues.
Resumo:
This presentation provides a beginning discussion about what the literature reports about incarcerated young people. Incarcerated Indigenous and low SES young people typically have very low literacy and mathematics skills which precludes them from future education and or employment opportunities, thus continuing the cycle of disadvantage, exclusion and despair(Payne, 2007). Being locked out of learning, they are stuck in a cycle of underachievement, a scenario which contributes to unacceptably high levels of recidivism(ACER, 2014). Success at education is considered an important protective factor against delinquent behaviours such as offending, substance abuse and truancy. Youth education and training centres provide educational opportunities for the incarcerated Indigenous youth but achievement continues to be lower than expected, particularly in mathematics. This presentation provides an introductory literature review focusing on incarcerated young people and education. It is also the preliminary writing for a small pilot project currently being conducted in one Youth Education and Training Centre in Australia.
Resumo:
Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.
Resumo:
This thesis examined how Bhutanese eighth grade students and teachers perceived their classroom learning environment in relation to a new standards-based mathematics curriculum. Data were gathered from administering surveys to a sample of 608 students and 98 teachers, followed by semi-structured interviews with selected participants. The findings of the study indicated that participants generally perceived their learning environments favorably. However, there were differences in terms of gender, school level, and school location. The study provides teachers, educational leaders, and policy-makers in Bhutan new insights into students' and teachers' perceptions of their mathematics classroom environments.
Resumo:
This study investigated the classroom environment in an underperforming mathematics classroom. The objectives were: (1) to investigate the classroom environment and identify influences upon it, and (2) to further explore those influences (i.e., teacher knowledge). This was completed using a diachronic case study approach in which data were gathered during lesson observations and coaching sessions. These data were analysed to describe and exemplify the classroom environment, then further described against forms of teacher knowledge. Conjectures regarding the importance of teacher knowledge of content were made which formed a base for developing a model of teacher planning and pedagogy.
Resumo:
Climbing Mountains, Building Bridges is a rich theme for exploring some of the “challenges, obstacles, links, and connections” facing mathematics education within the current STEM climate (Science, Technology, Engineering and Mathematics). This paper first considers some of the issues and debates surrounding the nature of STEM education, including perspectives on its interdisciplinary nature. It is next argued that mathematics is in danger of being overshadowed, in particular by science, in the global urgency to advance STEM competencies in schools and the workforce. Some suggestions are offered for lifting the profile of mathematics education within an integrated STEM context, with examples drawn from modelling with data in the sixth grade.
Resumo:
"This third edition ofthe Handbook of International Research in Mathematics Education provides a comprehensive overview of the most recent theoretical and practical developments in the field of mathematics education. Authored by an array of internationally recognized scholars and edited by Lyn English and David Kirshner, this collection brings together overviews and advances in mathematics education research spanning established and emerging topics, diverse workplace and school environments, and globally representative research priorities. New perspectives are presented on a range of critical topics including embodied learning, the theory-practice divide, new developments in the early years, educating future mathematics education professors, problem solving in a 21st century curriculum, culture and mathematics learning, complex systems, critical analysis of design-based research, multimodal technologies, and e-textbooks. Comprised of 12 revised and 17 new chapters, this edition extends the Handbook’s original themes for international research in mathematics education and remains in the process a definitive resource for the field."--Publisher website
Resumo:
This paper reports on the results of a project aimed at creating a research-informed, pedagogically reliable, technology-enhanced learning and teaching environment that would foster engagement with learning. A first-year mathematics for engineering unit offered at a large, metropolitan Australian university provides the context for this research. As part of the project, the unit was redesigned using a framework that employed flexible, modular, connected e-learning and teaching experiences. The researchers, interested in an ecological perspective on educational processes, grounded the redesign principles in probabilistic learning design (Kirschner et al., 2004). The effectiveness of the redesigned environment was assessed through the lens of the notion of affordance (Gibson, 1977,1979, Greeno, 1994, Good, 2007). A qualitative analysis of the questionnaire distributed to students at the end of the teaching period provided insight into factors impacting on the successful creation of an environment that encourages complex, multidimensional and multilayered interactions conducive to learning.
Resumo:
Handbooks serve an important function for our research community in providing state-of-the-art summations, critiques, and extensions of existing trends in research. In the intervening years between the second and third editions of the Handbook of International Research in Mathematics Education, there have been stimulating developments in research, as well as new challenges in translating outcomes into practice. This third edition incorporates a number of new chapters representing areas of growth and challenge, in addition to substantially updated chapters from the second edition. As such, the Handbook addresses five core themes, namely, Priorities in International Mathematics Education Research, Democratic Access to Mathematics Learning, Transformations in Learning Contexts, Advances in Research Methodologies, and Influences of Advanced Technologies...
Resumo:
Research on problem solving in the mathematics curriculum has spanned many decades, yielding pendulum-like swings in recommendations on various issues. Ongoing debates concern the effectiveness of teaching general strategies and heuristics, the role of mathematical content (as the means versus the learning goal of problem solving), the role of context, and the proper emphasis on the social and affective dimensions of problem solving (e.g., Lesh & Zawojewski, 2007; Lester, 2013; Lester & Kehle, 2003; Schoenfeld, 1985, 2008; Silver, 1985). Various scholarly perspectives—including cognitive and behavioral science, neuroscience, the discipline of mathematics, educational philosophy, and sociocultural stances—have informed these debates, often generating divergent resolutions. Perhaps due to this uncertainty, educators’ efforts over the years to improve students’ mathematical problem-solving skills have had disappointing results. Qualitative and quantitative studies consistently reveal mathematics students’ struggles to solve problems more significant than routine exercises (OECD, 2014; Boaler, 2009)...
Resumo:
Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve.
Resumo:
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion.
Resumo:
This is presentation of the refereed paper accepted for the Conferences' proceedings. The presentation was given on Tuesday, 1 December 2015.