944 resultados para fractal segmentation
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
The determination of fractal dimension (D) of humic particles was achieved by the turbidimetric technique where diluted suspensions of humic acids, in different experimental conditions, were analyzed by spectrophotometry UV-Vis. The slope of the lines (beta) was taken from the graphics (logtauvs loglambda) to obtain D. The results show that the values of D changed according to pH (3.0, 5.0 and 7.0), temperature (25 and 5 ºC) and shaking (magnetic and horizontal). In general, the value of D decreased with the increment of pH, increase of shaking and decrease of temperature.
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.
Resumo:
We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation (proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approa
Resumo:
Segmentointi on perinteisesti ollut erityisesti kuluttajamarkkinoinnin työkalu, mutta siirtymä tuotteista palveluihin on lisännyt segmentointitarvetta myös teollisilla markkinoilla. Tämän tutkimuksen tavoite on löytää selkeästi toisistaan erottuvia asiakasryhmiä suomalaisen liikkeenjohdon konsultointiyritys Synocus Groupin tarjoaman case-materiaalin pohjalta. K-means-klusteroinnin avulla löydetään kolme potentiaalista markkinasegmenttiä perustuen siihen, mitkä tarjoamaelementit 105 valikoitua suomalaisen kone- ja metallituoteteollisuuden asiakasta ovat maininneet tärkeimmiksi. Ensimmäinen klusteri on hintatietoiset asiakkaat, jotka laskevat yksikkökohtaisia hintoja. Toinen klusteri koostuu huolto-orientoituneista asiakkaista, jotka laskevat tuntikustannuksia ja maksimoivat konekannan käyttötunteja. Tälle kohderyhmälle kannattaisi ehkä markkinoida teknisiä palveluja ja huoltosopimuksia. Kolmas klusteri on tuottavuussuuntautuneet asiakkaat, jotka ovat kiinnostuneita suorituskyvyn kehittämisestä ja laskevat tonnikohtaisia kustannuksia. He tavoittelevat alempia kokonaiskustannuksia lisääntyneen suorituskyvyn, pidemmän käyttöiän ja alempien huoltokustannusten kautta.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Resumo:
Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df) e para a rede de drenagem inteira (Df) foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da contagem de caixas (Box-Counting). A rede de drenagem tem característica de autoafinidade. A dimensão fractal proveniente da relação de parâmetros obtidos pelas Leis de Horton apresentou resultados dentro dos limiares da teoria da geometria fractal.
Resumo:
The aim of this thesis is to study segmentation in industrial markets and develop a segmenting method proposal and criteria case study for a labelstock manufacturing company. An industrial company is facing many different customers with varying needs. Market segmentation is a process for dividing a market into smaller groups in which customers have the same or similar needs. Segmentation gives tools to the marketer to better match the product or service more closely to the needs of the target market. In this thesis a segmentation tool proposal and segmenting criteria is case studied for labelstock company’s Europe, Middle East and Africa business area customers and market. In the developed matrix tool different customers are planned to be evaluated based on customer characteristic variables. The criteria for the evaluating matrix are based on the customer’s buying organizations characteristics and buying behaviour. There are altogether 13 variables in the evaluating matrix. As an example of variables there are loyalty, size of the customer, estimated growth of the customer purchases and customer’s decision-making and buying behaviour. These characteristic variables will help to identify market segments to target and the customers belonging to those segments.
Resumo:
Ett ämne som väckt intresse både inom industrin och forskningen är hantering av kundförhållanden (CRM, eng. Customer Relationship Management), dvs. en kundorienterad affärsstrategi där företagen från att ha varit produktorienterade väljer att bli mera kundcentrerade. Numera kan kundernas beteende och aktiviteter lätt registreras och sparas med hjälp av integrerade affärssystem (ERP, eng. Enterprise Resource Planning) och datalager (DW, eng. Data Warehousing). Kunder med olika preferenser och köpbeteende skapar sin egen ”signatur” i synnerhet via användningen av kundkort, vilket möjliggör mångsidig modellering av kundernas köpbeteende. För att få en översikt av kundernas köpbeteende och deras lönsamhet, används ofta kundsegmentering som en metod för att indela kunderna i grupper utgående från deras likheter. De mest använda metoderna för kundsegmentering är analytiska modeller konstruerade för en viss tidsperiod. Dessa modeller beaktar inte att kundernas beteende kan förändras med tiden. I föreliggande avhandling skapas en holistisk översikt av kundernas karaktär och köpbeteende som utöver de konventionella segmenteringsmodellerna även beaktar dynamiken i köpbeteendet. Dynamiken i en kundsegmenteringsmodell innefattar förändringar i segmentens struktur och innehåll, samt förändringen av individuella kunders tillhörighet i ett segment (s.k migrationsanalyser). Vardera förändringen modelleras, analyseras och exemplifieras med visuella datautvinningstekniker, främst med självorganiserande kartor (SOM, eng. Self-Organizing Maps) och självorganiserande tidskartor (SOTM), en vidareutveckling av SOM. Visualiseringen anteciperas underlätta tolkningen av identifierade mönster och göra processen med kunskapsöverföring mellan den som gör analysen och beslutsfattaren smidigare. Asiakkuudenhallinta (CRM) eli organisaation muuttaminen tuotepainotteisesta asiakaskeskeiseksi on herättänyt mielenkiintoa niin yliopisto- kuin yritysmaailmassakin. Asiakkaiden käyttäytymistä ja toimintaa pystytään nykyään helposti tallentamaan ja varastoimaan toiminnanohjausjärjestelmien ja tietovarastojen avulla; asiakkaat jättävät jatkuvasti piirteistään ja ostokäyttäytymisestään kertovia tietojälkiä, joita voidaan analysoida. On tavallista, että asiakkaat poikkeavat toisistaan eri tavoin, ja heidän mieltymyksensä kuten myös ostokäyttäytymisensä saattavat olla hyvinkin erilaisia. Asiakaskäyttäytymisen monimuotoisuuteen ja tuottavuuteen paneuduttaessa käytetäänkin laajalti asiakassegmentointia eli asiakkaiden jakamista ryhmiin samankaltaisuuden perusteella. Perinteiset asiakassegmentoinnin ratkaisut ovat usein yksittäisiä analyyttisia malleja, jotka on tehty tietyn aikajakson perusteella. Tämän vuoksi ne monesti jättävät huomioimatta sen, että asiakkaiden käyttäytyminen saattaa ajan kuluessa muuttua. Tässä väitöskirjassa pyritäänkin tarjoamaan holistinen kuva asiakkaiden ominaisuuksista ja ostokäyttäytymisestä tarkastelemalla kahta muutosvoimaa tiettyyn aikarajaukseen perustuvien perinteisten segmentointimallien lisäksi. Nämä kaksi asiakassegmentointimallin dynamiikkaa ovat muutokset segmenttien rakenteessa ja muutokset yksittäisten asiakkaiden kuulumisessa ryhmään. Ensimmäistä dynamiikkaa lähestytään ajallisen asiakassegmentoinnin avulla, jossa visualisoidaan ajan kuluessa tapahtuvat muutokset segmenttien rakenteissa ja profiileissa. Toista dynamiikkaa taas lähestytään käyttäen nk. segmenttisiirtymien analyysia, jossa visuaalisin keinoin tunnistetaan samantyyppisesti segmentistä toiseen vaihtavat asiakkaat. Visualisoinnin tehtävänä on tukea havaittujen kaavojen tulkitsemista sekä helpottaa tiedonsiirtoa analysoijan ja päättäjien välillä. Visuaalisia tiedonlouhintamenetelmiä, kuten itseorganisoivia karttoja ja niiden laajennuksia, käytetään osoittamaan näiden menetelmien hyödyllisyys sekä asiakkuudenhallinnassa yleisesti että erityisesti asiakassegmentoinnissa.
Resumo:
Objective of this thesis was to map possibilities for systematic supplier management in field of chemical process industry. Through this study it was aimed to develop a tool for supplier management that could be integrated with operations in business unit. With developed tool suppliers should be able to be segmented based on their willingness and capability, and segmentation could be applied in purchasing decisions. In this thesis there was made a survey of methods that are recognized in literature to manage and allocate suppliers. This thesis recognizes segmentation as a method to group and select suppliers in procurement. Based on literature, a proposal for segmentation framework and evaluation criteria factors will be constituted. Based on theoretical proposal, in an expertise workshop a final segmentation framework was constituted, which covers segments with descriptions and evaluation part. Evaluation part includes an evaluation framework which helps to score suppliers with selected factors and leads to total grades in willingness and capability. These total grades will be the coordinates and they determine the segment where the supplier under evaluation belongs. In this thesis segments definitions, objectives, and road maps will be described.
Resumo:
This thesis presents a framework for segmentation of clustered overlapping convex objects. The proposed approach is based on a three-step framework in which the tasks of seed point extraction, contour evidence extraction, and contour estimation are addressed. The state-of-art techniques for each step were studied and evaluated using synthetic and real microscopic image data. According to obtained evaluation results, a method combining the best performers in each step was presented. In the proposed method, Fast Radial Symmetry transform, edge-to-marker association algorithm and ellipse fitting are employed for seed point extraction, contour evidence extraction and contour estimation respectively. Using synthetic and real image data, the proposed method was evaluated and compared with two competing methods and the results showed a promising improvement over the competing methods, with high segmentation and size distribution estimation accuracy.