996 resultados para Nonlinear Schrodinger equation
Resumo:
We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)10.1088/1751-8113/44/39/395004]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.
Resumo:
Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.
Resumo:
This thesis entitled Geometric algebra and einsteins electron: Deterministic field theories .The work in this thesis clarifies an important part of Koga’s theory.Koga also developed a theory of the electron incorporating its gravitational field, using his substitutes for Einstein’s equation.The third chapter deals with the application of geometric algebra to Koga’s approach of the Dirac equation. In chapter 4 we study some aspects of the work of mendel sachs (35,36,37,).Sachs stated aim is to show how quantum mechanics is a limiting case of a general relativistic unified field theory.Chapter 5 contains a critical study and comparison of the work of Koga and Sachs. In particular, we conclude that the incorporation of Mach’s principle is not necessary in Sachs’s treatment of the Dirac equation.
Resumo:
We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)
Resumo:
Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.
Resumo:
he classical problem of the response of a balanced, axisymmetric vortex to thermal and mechanical forcing is re-examined, paying special attention to the lower boundary condition. The correct condition is DΦ/Dt = 0, where Φ is the geopotential and D/Dt the material derivative, which explicitly accounts for a mass redistribution as part of the mean-flow response. This redistribution is neglected when using the boundary condition Dp/Dt = 0, which has conventionally been applied in this problem. It is shown that applying the incorrect boundary condition, and thereby ignoring the surface pressure change, leads to a zonal wind acceleration δū/δt that is too strong, especially near the surface. The effect is significant for planetary-scale forcing even when applied at tropopause level. A comparison is made between the mean-flow evolution in a baroclinic life-cycle, as simulated in a fully nonlinear, primitive-equation model, and that predicted by using the simulated eddy fluxes in the zonally-symmetric response problem. Use of the correct lower boundary condition is shown to lead to improved agreement.
Resumo:
The Hartman-Grobman Theorem of linearization is extended to families of dynamical systems in a Banach space X, depending continuously on parameters. We prove that the conjugacy also changes continuously. The cases of nonlinear maps and flows are considered, and both in global and local versions, but global in the parameters. To use a special version of the Banach-Caccioppoli Theorem we introduce equivalent norms on X depending on the parameters. The functional setting is suitable for applications to some nonlinear evolution partial differential equations like the nonlinear beam equation.
Resumo:
We study the propagation of perturbations in the energy density in a quark gluon plasma. Expanding the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations we obtain a nonlinear differential equation called the breaking wave equation. We solve it numerically and follow the time-evolution of initially localized pulses. We find that, quite unexpectedly, these pulses live for a very long time (compared to the reaction time-scales) before breaking. In practice, they mimick the Korteweg-de Vries solitons. Their existence may have some observable consequences.
Resumo:
We study the effects of final state interactions in two-proton emission by nuclei. Our approach is based on the solution the time-dependent Schrodinger equation. We show that the final relative energy between the protons is substantially influenced by the final state interactions. We also show that alternative correlation functions can be constructed showing large sensitivity to the spin of the diproton system. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate the perturbation series for the spectrum of a class of Schrodinger operators with potential V = 1/2 x(2) + g(m-1)x(2m)/(1 + alpha gx(2)) which generalize particular cases investigated in the literature in connection with models in laser theory and quantum field theory of particles and fields. It is proved that the series obey a modified strong asymptotic condition of order (m - 1) and have an order (m - 1) strong asymptotic series in g which are shown to be summable in the sense of Borel-Leroy method.
Resumo:
This work adds to Lucas (2000) by providing analytical solutions to two problems that are solved only numerically by the author. The first part uses a theorem in control theory (Arrow' s sufficiency theorem) to provide sufficiency conditions to characterize the optimum in a shopping-time problem where the value function need not be concave. In the original paper the optimality of the first-order condition is characterized only by means of a numerical analysis. The second part of the paper provides a closed-form solution to the general-equilibrium expression of the welfare costs of inflation when the money demand is double logarithmic. This closed-form solution allows for the precise calculation of the difference between the general-equilibrium and Bailey's partial-equilibrium estimates of the welfare losses due to inflation. Again, in Lucas's original paper, the solution to the general-equilibrium-case underlying nonlinear differential equation is done only numerically, and the posterior assertion that the general-equilibrium welfare figures cannot be distinguished from those derived using Bailey's formula rely only on numerical simulations as well.
Resumo:
The objective of this paper is to test for optimality of consumption decisions at the aggregate level (representative consumer) taking into account popular deviations from the canonical CRRA utility model rule of thumb and habit. First, we show that rule-of-thumb behavior in consumption is observational equivalent to behavior obtained by the optimizing model of King, Plosser and Rebelo (Journal of Monetary Economics, 1988), casting doubt on how reliable standard rule-of-thumb tests are. Second, although Carroll (2001) and Weber (2002) have criticized the linearization and testing of euler equations for consumption, we provide a deeper critique directly applicable to current rule-of-thumb tests. Third, we show that there is no reason why return aggregation cannot be performed in the nonlinear setting of the Asset-Pricing Equation, since the latter is a linear function of individual returns. Fourth, aggregation of the nonlinear euler equation forms the basis of a novel test of deviations from the canonical CRRA model of consumption in the presence of rule-of-thumb and habit behavior. We estimated 48 euler equations using GMM, with encouraging results vis-a-vis the optimality of consumption decisions. At the 5% level, we only rejected optimality twice out of 48 times. Empirical-test results show that we can still rely on the canonical CRRA model so prevalent in macroeconomics: out of 24 regressions, we found the rule-of-thumb parameter to be statistically signi cant at the 5% level only twice, and the habit ƴ parameter to be statistically signi cant on four occasions. The main message of this paper is that proper return aggregation is critical to study intertemporal substitution in a representative-agent framework. In this case, we fi nd little evidence of lack of optimality in consumption decisions, and deviations of the CRRA utility model along the lines of rule-of-thumb behavior and habit in preferences represent the exception, not the rule.
Resumo:
In the Tropics, continental shelves governed by western boundary currents are considered to be among the least productive ocean margins in the world, unless eddy-induced shelf-edge upwelling becomes significant. The eastern Brazilian shelf in the Southwest Atlantic is one of these, and since the slight nutrient input from continental sources is extremely oligotrophic. It is characterized by complex bathymetry with the presence of shallow banks and seamounts. In this work, a full three-dimensional nonlinear primitive equation ocean model is used to demonstrate that the interaction of tidal currents and the bottom topography of the east Brazil continental shelf is capable of producing local upwelling of South Atlantic Central Water, bringing nutrients up from deep waters to the surface layer. Such upper layer enrichment is found to be of significance in increasing local primary productivity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q
Resumo:
We investigate several diffusion equations which extend the usual one by considering the presence of nonlinear terms or a memory effect on the diffusive term. We also considered a spatial time dependent diffusion coefficient. For these equations we have obtained a new classes of solutions and studied the connection of them with the anomalous diffusion process. We start by considering a nonlinear diffusion equation with a spatial time dependent diffusion coefficient. The solutions obtained for this case generalize the usual one and can be expressed in terms of the q-exponential and q-logarithm functions present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear external force is considered. For this case the solutions can be also expressed in terms of the q-exponential and q-logarithm functions. However, by a suitable choice of the nonlinear external force, we may have an exponential behavior, suggesting a connection with standard thermostatistics. This fact reveals that these solutions may present an anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann- Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a kernel leading to the anomalous diffusive process. Particularly, our first choice leads to both a the usual behavior and anomalous behavior obtained through a fractionalderivative equation. The results obtained, within this context, correspond to a change in the waiting-time distribution for jumps in the formalism of random walks. These modifications had direct influence in the solutions, that turned out to be expressed in terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment associated to these distributions led to an anomalous spread of the distribution, in contrast to the usual situation where one finds a linear increase with time