Borel-Leroy summability of a nonpolynomial potential


Autoria(s): COSTA, G. A. T. F. da; GOMES, M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

We investigate the perturbation series for the spectrum of a class of Schrodinger operators with potential V = 1/2 x(2) + g(m-1)x(2m)/(1 + alpha gx(2)) which generalize particular cases investigated in the literature in connection with models in laser theory and quantum field theory of particles and fields. It is proved that the series obey a modified strong asymptotic condition of order (m - 1) and have an order (m - 1) strong asymptotic series in g which are shown to be summable in the sense of Borel-Leroy method.

Identificador

REPORTS ON MATHEMATICAL PHYSICS, v.61, n.3, p.401-415, 2008

0034-4877

http://producao.usp.br/handle/BDPI/29294

http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000257085500006&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

Relação

Reports on Mathematical Physics

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #Schrodinger operators #nonpolynomial potential #Borel-Leroy summability #ANHARMONIC OSCILLATOR #SCHRODINGER-EQUATION #RATIONAL INTERACTION #Physics, Mathematical
Tipo

article

original article

publishedVersion