On the Hartman-Grobman Theorem with Parameters
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
The Hartman-Grobman Theorem of linearization is extended to families of dynamical systems in a Banach space X, depending continuously on parameters. We prove that the conjugacy also changes continuously. The cases of nonlinear maps and flows are considered, and both in global and local versions, but global in the parameters. To use a special version of the Banach-Caccioppoli Theorem we introduce equivalent norms on X depending on the parameters. The functional setting is suitable for applications to some nonlinear evolution partial differential equations like the nonlinear beam equation. CNPq[301994/85-4] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Programa Pronex-Projeto Tematico CNPq-FAPESP[2003/10042-0] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) CAPES[DGU 127/07] MEC-Spain MEC, Spain[MTM2005-07660-C02-01] MEC-Spain MEC, Spain[PHB2006-006] |
Identificador |
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, v.22, n.3, p.473-489, 2010 1040-7294 http://producao.usp.br/handle/BDPI/28913 10.1007/s10884-010-9160-7 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Journal of Dynamics and Differential Equations |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #The Hartman-Grobman theorem #Linearization in infinite dimensions #Dynamical systems #Hyperbolicity #Uniform dichotomy #BEAM EQUATION #BANACH-SPACES #CONTRACTIONS #SYSTEMS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |