916 resultados para Discrete Mathematics and Combinatorics
Resumo:
Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This chapter presents a collaborative experience between two neighbouring countries from South America: Argentina and Brazil. Our purpose is to share a model of international collaboration that we consider to be an alternative to the classical movement of early mathematical and scientific knowledge between East and West and between North and South. We start our chapter with a general discussion about the phenomenon of globalization considering some local examples. We characterize our collaboration exploring the tensions and difficulties we faced along our own professional development at the local as well as the international level. We describe the development of our prior collaborative work that established the foundation for our international collaboration portraying the local mathematics education communities. We refer to some balances that were created among our relationships, the expansion of our collaborative network, and how this particular collaboration allows us to contribute to the regional field and inform the international one. We discuss the way that the search for balance and symmetry, or at least a complementary asymmetry in our collaborative relationships, has led us to generate a genuine and equitable collaboration.
Resumo:
Spherical codes in even dimensions n = 2m generated by a commutative group of orthogonal matrices can be determined by a quotient of m-dimensional lattices when the sublattice has an orthogonal basis. We discuss here the existence of orthogonal sublattices of the lattices A2, D3, D4 and E8, which have the best packing density in their dimensions, in order to generate families of commutative group codes approaching the bound presented in Siqueira and Costa (2008) [14]. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we show how to compute in O(n2) steps the Fourier coefficients associated with the Gelfand-Levitan approach for discrete Sobolev orthogonal polynomials on the unit circle when the support of the discrete component involving derivatives is located outside the closed unit disk. As a consequence, we deduce the outer relative asymptotics of these polynomials in terms of those associated with the original orthogonality measure. Moreover, we show how to recover the discrete part of our Sobolev inner product. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Let G be a group, let S be a subgroup with infinite index in G and let FSG be a certain Z2G-module. In this paper, using the cohomological invariant E(G, S, FSG) or simply E˜(G, S) (defined in [2]), we analyze some results about splittings of group G over a commensurable with S subgroup which are related with the algebraic obstruction “singG(S)" defined by Kropholler and Roller ([8]. We conclude that E˜(G, S) can substitute the obstruction “singG(S)" in more general way. We also analyze splittings of groups in the case, when G and S satisfy certain duality conditions.
Resumo:
Let B[X; S] be a monoid ring with any fixed finite unitary commutative ring B and is the monoid S such that b = a + 1, where a is any positive integer. In this paper we constructed cyclic codes, BCH codes, alternant codes, Goppa codes, Srivastava codes through monoid ring . For a = 1, almost all the results contained in [16] stands as a very particular case of this study.
Resumo:
We prove some estimates on the spectrum of the Laplacian of the total space of a Riemannian submersion in terms of the spectrum of the Laplacian of the base and the geometry of the fibers. When the fibers of the submersions are compact and minimal, we prove that the spectrum of the Laplacian of the total space is discrete if and only if the spectrum of the Laplacian of the base is discrete. When the fibers are not minimal, we prove a discreteness criterion for the total space in terms of the relative growth of the mean curvature of the fibers and the mean curvature of the geodesic spheres in the base. We discuss in particular the case of warped products.
Resumo:
For a locally compact Hausdorff space K and a Banach space X we denote by C-0(K, X) the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Gamma an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between C-0(Gamma, X) and C-0(K, X) is greater than or equal to 2n + 1. We also show that the Banach-Mazur distance between C-0(N, X) and C([1, omega(n)k], X) is exactly 2n + 1, for any positive integers n and k. These results extend and provide a vector-valued version of some 1970 Cambern theorems, concerning the cases where n = 1 and X is the scalar field.
Resumo:
Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.
Resumo:
This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes.
Resumo:
This paper presents videogames as a very useful tool in high studies with respect to mathematical matters. It describes the implementation of a videogame developed by its authors which makes it possible for students to reinforce mathematical concepts in a motivating environment. With this work we intend to contribute to the process of engaging a bigger number of university teaching professionals and researchers in the use of serious games and the study of their theoretical frameworks, design, development and application of scientific education. With this idea the authors of the present paper have created and developed the videogame “The Math Castle” which consists in a series of tests through which various aspects of Mathematics are dealt with, especially in the areas of Discrete Mathematics, which due to its nature can be particularly well adapted to this kind of activity, Analysis or Geometry. In this paper there lies a complete description of the game developed and the results obtained with it.
Resumo:
This paper presents a study in which the relationship between basic subjects (Mathematics and Physics) and applied engineering subjects (related to Machinery, Electrical Engineering, Topography and Buildings) in higher engineering education curricula is evaluated. The analysis has been conducted using the academic records of 206 students for five years. Furthermore, 34 surveys and personal interviews were conducted to analyze the connections between the contents taught in each subject and to identify student perceptions of the correlation with other subjects or disciplines. At the same time, the content of the different subjects have been analyzed to verify the relationship among the disciplines.Aproper coordination among subjects will allow students to relate and interconnect topics of different subjects, even with the ones learnt in previous courses, while also helping to reduce dropout rates and student failures in successfully accomplishing the different courses.