Riemannian Submersions with Discrete Spectrum


Autoria(s): Bessa, G. Pacelli; Montenegro, J. Fabio; Piccione, Paolo
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

29/10/2013

29/10/2013

2012

Resumo

We prove some estimates on the spectrum of the Laplacian of the total space of a Riemannian submersion in terms of the spectrum of the Laplacian of the base and the geometry of the fibers. When the fibers of the submersions are compact and minimal, we prove that the spectrum of the Laplacian of the total space is discrete if and only if the spectrum of the Laplacian of the base is discrete. When the fibers are not minimal, we prove a discreteness criterion for the total space in terms of the relative growth of the mean curvature of the fibers and the mean curvature of the geodesic spheres in the base. We discuss in particular the case of warped products.

CNPq-CAPES (Brazil)

CNPqCAPES (Brazil)

MEC (Spain)

MEC (Spain) [PCI2006-A7-0532]

Identificador

JOURNAL OF GEOMETRIC ANALYSIS, NEW YORK, v. 22, n. 2, supl. 1, Part 2, pp. 603-620, APR, 2012

1050-6926

http://www.producao.usp.br/handle/BDPI/36385

10.1007/s12220-010-9207-3

http://dx.doi.org/10.1007/s12220-010-9207-3

Idioma(s)

eng

Publicador

SPRINGER

NEW YORK

Relação

JOURNAL OF GEOMETRIC ANALYSIS

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #RIEMANNIAN SUBMERSIONS #DISCRETE SPECTRUM #ESSENTIAL SPECTRUM #PURELY CONTINUOUS-SPECTRUM #NEGATIVE CURVATURE #MANIFOLDS #LAPLACIAN #MATHEMATICS
Tipo

article

original article

publishedVersion