Relating propelinear and binary G-linear codes
| Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
|---|---|
| Data(s) |
20/05/2014
20/05/2014
28/01/2002
|
| Resumo |
In this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved. |
| Formato |
187-194 |
| Identificador |
http://dx.doi.org/10.1016/S0012-365X(01)00206-0 Discrete Mathematics. Amsterdam: Elsevier B.V., v. 243, n. 1-3, p. 187-194, 2002. 0012-365X http://hdl.handle.net/11449/34797 10.1016/S0012-365X(01)00206-0 WOS:000173061500012 WOS000173061500012.pdf |
| Idioma(s) |
eng |
| Publicador |
Elsevier B.V. |
| Relação |
Discrete Mathematics |
| Direitos |
openAccess |
| Palavras-Chave | #binary codes #Z(4)-linearity #propelinear codes #isometry groups #G-linearity |
| Tipo |
info:eu-repo/semantics/article |