Commutative group codes in R4, R6, R8 and R16-Approaching the bound


Autoria(s): Alves, Carina; Costa, Sueli I. R.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

10/05/2013

Resumo

Spherical codes in even dimensions n = 2m generated by a commutative group of orthogonal matrices can be determined by a quotient of m-dimensional lattices when the sublattice has an orthogonal basis. We discuss here the existence of orthogonal sublattices of the lattices A2, D3, D4 and E8, which have the best packing density in their dimensions, in order to generate families of commutative group codes approaching the bound presented in Siqueira and Costa (2008) [14]. © 2013 Elsevier B.V. All rights reserved.

Formato

1677-1687

Identificador

http://dx.doi.org/10.1016/j.disc.2013.04.005

Discrete Mathematics, v. 313, n. 16, p. 1677-1687, 2013.

0012-365X

http://hdl.handle.net/11449/75379

10.1016/j.disc.2013.04.005

WOS:000320680100008

2-s2.0-84884813554

Idioma(s)

eng

Relação

Discrete Mathematics

Direitos

closedAccess

Palavras-Chave #Group codes #Lattices #Minimum distance #Packing density #Spherical codes
Tipo

info:eu-repo/semantics/article