991 resultados para Blow up along a submanifold
Resumo:
L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites. Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat.
Resumo:
"Available online 22 March 2016"
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.
Resumo:
Esta dissertação é um estudo sobre o conto Las babas del diablo, de Julio Cortázar, e do filme Blow-Up, de Michelangelo Antonioni. Entre as inúmeras portas de entrada para abordar essas duas obras, optamos por explorá-las pelo caminho da fotografia, que é, a um só tempo, eixo temático ficcional do conto e do filme e também mola propulsora para um debate teórico sobre o fotográfico. Inserida em uma perspectiva comparatista, lançamos mão da intertextualidade e da interdisciplinaridade, conceitos fundamentais da Literatura Comparada. Nesse sentido, abordamos inicialmente as relações de produtividade entre os próprios textos e, depois, entre textos e imagens. Posteriormente, aproveitando uma proposta de Cortázar de comparar a fotografia com o conto, passamos a explorar a fotografia no seu âmbito teórico. Dois autores são basilares nesse ponto do trabalho: Roland Barthes e Philippe Dubois. O primeiro, na obra A câmara clara, coloca-se como mediador de toda análise sobre a fotografia, procedendo, dentro de uma perspectiva teórica, de forma semelhante aos personagens de Las babas del diablo e de Blow-Up, estes no mundo da ficção. Já Dubois, em O ato fotográfico, debate algumas das propostas de Barthes e faz um apanhado histórico bastante produtivo na medida em que aborda as três percepções da fotografia desde sua invenção até os dias atuais. Ao alçarmos a fotografia como mediadora teórica principal do corpus deste trabalho, realizamos um novo recorte, detendo-nos naqueles eixos levantados por Dubois e por Barthes que, na leitura de Las babas del diablo e de Blow-Up, nos pareceram exigir uma exploração mais produtiva. Nesse momento, estarão presentes questões relacionadas tanto à fotografia em si quanto às relações que ela estabelece com o fotógrafo e com aquele que a observa, sempre levando em conta as tentativas de tradução da imagem fotográfica para o texto e para o filme.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
2000 Mathematics Subject Classification: 35K55, 35K60.
Resumo:
Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement et de la contraction symplectique, que nous définissons relative à une sous-variété lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que nous éclatons une configuration suffisament symmetrique des plongements de boules, nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement ~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier le packing relatif dans (ℂP²,ℝP²).
Resumo:
Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The synchronization of oscillatory activity in networks of neural networks is usually implemented through coupling the state variables describing neuronal dynamics. In this study we discuss another but complementary mechanism based on a learning process with memory. A driver network motif, acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven motif, a learner, tunes its internal couplings according to the oscillations observed in the teacher. We show that under appropriate training the learner motif can dynamically copy the coupling pattern of the teacher and thus synchronize oscillations with the teacher. Then, we demonstrate that the replication of the WLC dynamics occurs for intermediate memory lengths only. In a unidirectional chain of N motifs coupled through teacher-learner paradigm the time interval required for pattern replication grows linearly with the chain size, hence the learning process does not blow up and at the end we observe phase synchronized oscillations along the chain. We also show that in a learning chain closed into a ring the network motifs come to a consensus, i.e. to a state with the same connectivity pattern corresponding to the mean initial pattern averaged over all network motifs.