Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism
Data(s) |
2016
|
---|---|
Resumo |
"Available online 22 March 2016" We study a class of $p(x,t)$-curl systems arising in electromagnetism, with a nonlinear source term. Denoting by $\boldsymbol{h}$ the magnetic field, the source term considered is of the form $\lambda\boldsymbol{h}\left( \int_{\Omega}|\boldsymbol{h}|^{2}\right)^{\frac{\sigma-2}{2}}$ where $\lambda\in\{-1,0,1\}$: when $\lambda\in\{-1,0\}$ we consider $0<\sigma\leq2$ and for $\lambda=1$ we have $\sigma\geq1$. We introduce a suitable functional framework and a convenient basis that allow us to apply the Galerkin's method and prove existence of local or global solutions, depending on the values of $\lambda$ and $\sigma$. We study the finite time extinction or the stabilization towards zero of the solutions when $\lambda\in\{-1,0\}$ and the blow-up of local solutions when $\lambda=1$. |
Identificador |
0022-247X http://hdl.handle.net/1822/41293 10.1016/j.jmaa.2016.03.045 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://dx.doi.org/10.1016/j.jmaa.2016.03.045 |
Direitos |
info:eu-repo/semantics/openAccess |
Palavras-Chave | #Electromagnetic problems #p(x,t)-curl systems #Variable exponents #Blow-up #Extinction in time |
Tipo |
info:eu-repo/semantics/article |