Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism


Autoria(s): Antontsev, Stanislav; Miranda, Fernando; Santos, Lisa
Data(s)

2016

Resumo

"Available online 22 March 2016"

We study a class of $p(x,t)$-curl systems arising in electromagnetism, with a nonlinear source term. Denoting by $\boldsymbol{h}$ the magnetic field, the source term considered is of the form $\lambda\boldsymbol{h}\left( \int_{\Omega}|\boldsymbol{h}|^{2}\right)^{\frac{\sigma-2}{2}}$ where $\lambda\in\{-1,0,1\}$: when $\lambda\in\{-1,0\}$ we consider $0<\sigma\leq2$ and for $\lambda=1$ we have $\sigma\geq1$. We introduce a suitable functional framework and a convenient basis that allow us to apply the Galerkin's method and prove existence of local or global solutions, depending on the values of $\lambda$ and $\sigma$. We study the finite time extinction or the stabilization towards zero of the solutions when $\lambda\in\{-1,0\}$ and the blow-up of local solutions when $\lambda=1$.

Identificador

0022-247X

http://hdl.handle.net/1822/41293

10.1016/j.jmaa.2016.03.045

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dx.doi.org/10.1016/j.jmaa.2016.03.045

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Electromagnetic problems #p(x,t)-curl systems #Variable exponents #Blow-up #Extinction in time
Tipo

info:eu-repo/semantics/article