Lower bounds on blow up solutions of the three-dimensional Navier-Stokes equations in homogeneous Sobolev spaces
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/11/2012
|
Resumo |
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841] |
Formato |
15 |
Identificador |
http://dx.doi.org/10.1063/1.4762841 Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 53, n. 11, p. 15, 2012. 0022-2488 http://hdl.handle.net/11449/25142 10.1063/1.4762841 WOS:000311964100019 WOS000311964100019.pdf |
Idioma(s) |
eng |
Publicador |
American Institute of Physics (AIP) |
Relação |
Journal of Mathematical Physics |
Direitos |
closedAccess |
Palavras-Chave | #Navier-Stokes equations |
Tipo |
info:eu-repo/semantics/article |