143 resultados para Plaletet-Rich Plasma
Resumo:
Alteration in hydrophilicity feature of chitosan films by hexamethyldisilazane (HMDS) cold-plasma treatment is evaluated. All treated films were colorless and transparent with no apparent textural changes. The effect on surfaces was characterized through contact angle measurements, degree of swelling and water vapor permeation. A significant reduction in all of the hydrophilicity parameters was observed. It is assumed that the HMDS treatment forms nonpolar silicone type structures. The goal is to investigate the formation of a stable hydrophobic barrier in order to increase the chitosan films usefulness in packaging applications.
Resumo:
An LC-MS/MS method has been developed for the determination of efavirenz (EFZ) in human plasma using hydrochlorothiazide as internal standard (I.S.). An ESI negative mode with multiple reaction-monitoring was used monitoring the transitions m/z 313.88→69.24 (EFZ) and 296.02→204.76 (I.S.). Samples were extracted using liquid-liquid extraction. The total run time was 2.0 min. The separation was achieved with HPLC-RP using a monolithic column. The assay was linear in the concentration range of 100 - 5000 ng mL-1. The mean recovery was 83%. Intra- and inter-day precision were < 9.5% and < 8.9%, respectively and accuracy was in the range ± 8.33%. The method was successfully applied to a bioequivalence study.
Resumo:
In this work the production of synthesis gas from a mixture of methane (CH4) and carbon dioxide (CO2) by thermal plasma was studied. The best relation found for the gas mixture [CO2]/[CH4] was 1.3. Under the excess of CH4 in the gas mixture soot was formed and also benzene, indene and naphthalene were identified. The disulfides compounds in the gas mixture were degraded causing no interference in the synthesis gas production, suggesting no needs of pretreatment step for sulfurorganic compounds removal in the process
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
Piplartine (PPTN) is an alkaloid amide found in Piper species that presents different activities. PPTN determination in rat plasma is necessary to better understand its biological effects. The aim of this study was to develop a sensitive LC-MS/MS method for the determination of PPTN in rat plasma. The performance criteria for linearity, sensitivity, precision, accuracy, recovery, and stability have been assessed and were within the recommended guidelines. The validated method proved to be suitable in a pilot study of PPTN kinetic disposition in rat plasma after a single intraperitoneal dose, and represents an appropriate tool to further pharmacokinetic studies.
Resumo:
Copper fractionation in plasma, muscle and liver of Nile tilapia was performed after protein separation by 2D-PAGE. SR XRF analysis indicated the presence of copper in three protein spots of plasma, and in two protein spots of muscle and liver, respectively. Copper ions were found to be distributed mostly in proteins that had a molar mass of less than 54 kDa and greater than 13 kDa and a pI in the 5.3-9.3 range. The copper concentration bound to these proteins was determined by GFAAS which showed concentrations in the 1.20-4.82 mg g-1 range.
Resumo:
A simple, rapid and selective method using high-performance liquid chromatography with ultraviolet detection (267 nm) was applied for the determination of tryptophan in plasma. Separation was carried out on a C18 column (150 x 4.6 mm internal diameter) in 6 min. The mobile phase consisted of 5 mM the sodium acetate and acetonitrile (92:8, v/v). The method was shown to be precise and accurate, and good recovery of analyte was achieved, characterizing the method as efficient and reliable for use in laboratory analysis.
Resumo:
A simple and fast method for determination of 40 basic drugs in human plasma employing gas-chromatography with nitrogen-phosphorus detection was developed and validated. Drugs were extracted from 800 µL of plasma with 250 µL of butyl acetate at basic pH. Aliquots of the organic extract were directly injected on a column with methylsilicone stationary phase. Total chromatographic run time was 25 min. All compounds were detected in concentrations ranging from therapeutic to toxic levels, with intermediate precision CV% below 11.2 and accuracy in the range of 92-114%.
Resumo:
A high performance liquid chromatographic-diode array detection method for the determination of busulfan in plasma was developed and validated. Sample preparation consisted of protein precipitation followed by derivatization with sodium diethyldithiocarbamate and liquid-liquid extraction with methyl-tert-butyl ether. Chromatograms were monitored at 277 nm. Separation was carried out on a Lichrospher RP 18 column (5 µm, 250 x 4 mm). The mobile phase consisted of water and acetonitrile (20:80, v/v). The method presented adequate specificity, linearity, precision and accuracy and allowed reliable determination of busulfan in clinical plasma samples, being applied to three patients submitted to bone marrow transplantation.
Resumo:
The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.
Resumo:
A fast and efficient method has been developed and validated for the determination of fipronil in bovine plasma. Samples were subjected to solid-phase extraction (SPE) followed by reversed phase liquid chromatography (LC) separation, using acetonitrile/water (60:40 v/v) as the mobile phase with a flow rate of 1.0 mL/min and ultraviolet (UV) detection at 210 nm. Ethiprole was used as the internal standard (IS). The method was found to be linear over the range 5-500 ng/mL (r = 0.999). The limit of quantitation (LOQ) was validated at 5 ng/mL. The method was successfully applied to monitor plasma concentrations following subcutaneous administration of fipronil in cattle.
Resumo:
A sensitive, accurate and simple method using HPLC-MS/MS was developed and validated for levodopa quantitation in human plasma. Analysis was achieved on a pursuit® C18 analytical column (5 µm; 150 x 4.6 mm i.d.) using a mobile phase (methanol and water , 90:10, v/v) containing formic acid 0.5% v/v, after extracting the samples using a simple protein plasma precipitation with perchloric acid. The developed method was validated in accordance with ANVISA guidelines and was successfully applied to a bioequivalence study in 60 healthy volunteers demonstrating the feasibility and reliability of the proposed method.
Resumo:
Topiramate and the other frequently co-administered antiepileptic drugs carbamazepine, phenytoin and phenobarbital were determined in 100 µL plasma samples by gas chromatography with nitrogen phosphorus detection (GC-NPD), after a one-step liquid-liquid extraction with ethyl acetate, followed by flash methylation with trimethylphenylammonium hydroxide. Total chromatographic run time was 12.5 min. Intra-assay and inter-assay precision was 2.5-7.3% and 1.6-5.2%, respectively. Accuracy was 100.1-104.2%. The limit of quantitation was 1 µg mL-1 for all analytes, proving suitable for routine application in therapeutic drug monitoring of antiepileptic drugs.
Resumo:
In this study, the validation of a method for analyzing the uranium (U) concentration in human urine samples by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) was conducted. PROCORAD (the Association for the Promotion of Quality Control in Radiotoxicological Analysis) provided two urine samples spiked with unknown contents of U (Sample A = 33.6 ± 1.0 µg/L and Sample B = 3.3 ± 0.1 µg/L) and one unspiked sample as a blank. The analyses were directly performed on the diluted urine samples (dilution factor = 1:20) in 5% v/v HNO3. The results obtained by ICP-SFMS corresponded well with the reference values, and the limits of detection were 235U = 0.049 × 10-3 µg/L and 238U = 7.37 × 10-3 µg/L. The ICP-SFMS technique has been shown to be successful in the analysis of the U concentration in human urine samples and for the quantification of isotopic ratios.
Resumo:
Rich and Suter diagrams are a very useful tool to explain the electron configurations of all transition elements, and in particular, the s¹ and s0 configurations of the elements Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, and Pt. The application of these diagrams to the inner transition elements also explains the electron configurations of lanthanoids and actinoids, except for Ce, Pa, U, Np, and Cm, whose electron configurations are indeed very special because they are a mixture of several configurations.