12 resultados para Collaborative learning flow pattern
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
It is presented a research on the application of a collaborative learning and authoring during all delivery phases of e-learning programmes or e-courses offered by educational institutions. The possibilities for modelling of an e-project as a specific management process based on planned, dynamically changing or accidentally arising sequences of learning activities, is discussed. New approaches for project-based and collaborative learning and authoring are presented. Special types of test questions are introduced which allow test generation and authoring based on learners’ answers accumulated in the frame of given e-course. Experiments are carried out in an e-learning environment, named BEST.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.
Resumo:
When Recurrent Neural Networks (RNN) are going to be used as Pattern Recognition systems, the problem to be considered is how to impose prescribed prototype vectors ξ^1,ξ^2,...,ξ^p as fixed points. The synaptic matrix W should be interpreted as a sort of sign correlation matrix of the prototypes, In the classical approach. The weak point in this approach, comes from the fact that it does not have the appropriate tools to deal efficiently with the correlation between the state vectors and the prototype vectors The capacity of the net is very poor because one can only know if one given vector is adequately correlated with the prototypes or not and we are not able to know what its exact correlation degree. The interest of our approach lies precisely in the fact that it provides these tools. In this paper, a geometrical vision of the dynamic of states is explained. A fixed point is viewed as a point in the Euclidean plane R2. The retrieving procedure is analyzed trough statistical frequency distribution of the prototypes. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented
Resumo:
As is well known, the Convergence Theorem for the Recurrent Neural Networks, is based in Lyapunov ́s second method, which states that associated to any one given net state, there always exist a real number, in other words an element of the one dimensional Euclidean Space R, in such a way that when the state of the net changes then its associated real number decreases. In this paper we will introduce the two dimensional Euclidean space R2, as the space associated to the net, and we will define a pair of real numbers ( x, y ) , associated to any one given state of the net. We will prove that when the net change its state, then the product x ⋅ y will decrease. All the states whose projection over the energy field are placed on the same hyperbolic surface, will be considered as points with the same energy level. On the other hand we will prove that if the states are classified attended to their distances to the zero vector, only one pattern in each one of the different classes may be at the same energy level. The retrieving procedure is analyzed trough the projection of the states on that plane. The geometrical properties of the synaptic matrix W may be used for classifying the n-dimensional state- vector space in n classes. A pattern to be recognized is seen as a point belonging to one of these classes, and depending on the class the pattern to be retrieved belongs, different weight parameters are used. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented.
Resumo:
There have been multifarious approaches in building expert knowledge in medical or engineering field through expert system, case-based reasoning, model-based reasoning and also a large-scale knowledge-based system. The intriguing factors with these approaches are mainly the choices of reasoning mechanism, ontology, knowledge representation, elicitation and modeling. In our study, we argue that the knowledge construction through hypermedia-based community channel is an effective approach in constructing expert’s knowledge. We define that the knowledge can be represented as in the simplest form such as stories to the most complex ones such as on-the-job type of experiences. The current approaches of encoding experiences require expert’s knowledge to be acquired and represented in rules, cases or causal model. We differentiate the two types of knowledge which are the content knowledge and socially-derivable knowledge. The latter is described as knowledge that is earned through social interaction. Intelligent Conversational Channel is the system that supports the building and sharing on this type of knowledge.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
The advances in building learning technology now have to emphasize on the aspect of the individual learning besides the popular focus on the technology per se. Unlike the common research where a great deal has been on finding ways to build, manage, classify, categorize and search knowledge on the server, there is an interest in our work to look at the knowledge development at the individual’s learning. We build the technology that resides behind the knowledge sharing platform where learning and sharing activities of an individual take place. The system that we built, KFTGA (Knowledge Flow Tracer and Growth Analyzer), demonstrates the capability of identifying the topics and subjects that an individual is engaged with during the knowledge sharing session and measuring the knowledge growth of the individual learning on a specific subject on a given time space.
Resumo:
It is discussed some changes in the traditional e-learning notion on the point of view of R. Koper’s question 'where is the learning in e-learning?’. We put a focus on the conception of learning as a management process and present the project Bulgarian Educational Site (BEST) – a possible answer to Koper’s question. The BEST is a virtual learning environment, based on the following principles: learning is a goal-directed and didactics-managed process; learners may define their own learning objectives, monitor and regulate the learning process; collaborative e-learning is more effective; etc. The BEST is based on two famous e-learning systems (Moodle, LAMS) and Plovdiv e-University (versions 1.0 and 2.0). The paper brings up a mater about the new ‘electronic’ pedagogy and proposes an approach for pedagogical modeling and interpretation of e-learning applied in the BEST.
Resumo:
The problem of decision functions quality in pattern recognition is considered. An overview of the approaches to the solution of this problem is given. Within the Bayesian framework, we suggest an approach based on the Bayesian interval estimates of quality on a finite set of events.
Resumo:
We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013