56 resultados para W.G. Sebald


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pluri-annual proxy records of marine sediment cores from the Tagus Prodelta off Lisbon, Portugal, have been generated to gain insight into the climatic and hydrographic changes in the area during the twentieth century. The study includes benthic and planktonic foraminiferal faunas and the stable isotopic composition of one benthic (Uvigerina celtica) and two planktonic (Globigerina bulloides and Globorotalia inflata) foraminiferal species. Sea bottom and surface water temperatures were estimated based on the d18O values of these species and compared with instrumental data. The foraminiferal fauna and the isotope-based temperature record indicate increasing temperatures throughout the last century. The immigration of a new species, Saidovina karreriana, to the area around 100 years ago indicates changes in the trophic conditions and water mass properties, which are probably at least partly due to anthropogenic pollution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Core T89-40, eastern Walvis Ridge between the subtropical gyre and Benguela coastal upwelling system, contains three types of levels of abundant left-coiled Neogloboquadrina pachyderma, a cold, eutrophic species, next to subtropical species. Type A peaks (362, 110 and 53-43 ky BP) are accompanied with high percentages of other eutrophic species. They are attributed to intensified upwelling in the Northern Benguela region. Type B peaks (129 and 92 ky BP) are accompanied by moderate (<48%) contributions of other eutrophic species and increased numbers of subtropical species. These suggest intensified upwelling in the Northern Benguela cells and may reflect increased seasonal contrasts between the winter upwelling and the subtropical summer conditions. The highest C-peaks, up to 38%, are associated with strongly reduced percentages of other eutrophic species and with abundant subtropical species (Marine Isotopic Stage 11.3 (401 ky) and 9.3 (326 ky)). The subtropical species preceeded the C-peaks by ca 8 ky. We argue that the C-peaks were not produced by local reproduction but expatriated from the Northern Benguela upwelling cells. Here more nutrient-rich waters may have produced a mono-specific Neogloboquadrina pachyderma (left) fauna during strong polewards shifts of the frontal systems in the South Atlantic, which could have been transported 700 km offshore to the core location, unadmixed with eutrophic species from the surrounding waters. We propose meandering shelf-edge jets, strong contour jets, as a mechanism for the transport. The timing of the C-peaks and associated subtropical peaks agrees with the known precessional cyclicity of the SE Atlantic front movements and zonality of the trade winds, which supports the shelf-edge jet hypothesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tropical planktonic foraminifers occur throughout the sequences at all sites of Leg 85, and the standard planktonic foraminiferal zonation of Blow (1969) is applicable to most of the recovered sequences. However, the abundance and state of preservation of foraminifers decline markedly in certain intervals because of the effects of dissolution. Although siliceous microfossils studied on this leg indicate recovery of nearly complete records for the Pleistocene to Oligocene interval, the planktonic foraminiferal biostratigraphy is interrupted by strongly dissolved sections at all sites. Particularly, faunas assignable to Zone N7 (early Miocene) and Zone N15-16 (early late Miocene) are almost totally unrecognizable throughout the eastern equatorial Pacific. Well-preserved and diverse planktonic foraminifers occur in the lower middle Miocene, where the evolutionary developments of Orbulina universa d'Orbigny and Globorotalia fohsi Cushman and Ellisor are well represented. The Orbulina first appearance datum is observed to be nearly coincident with the last occurrence level of the diatom Annellus californicus Tempère, thus .establishing an age of 15 Ma for this datum by using the paleomagnetic calibration of the diatom datum. Moderately well-preserved late Eocene planktonic foraminifers occur in the carbonate sediments immediately overlying the basalt basement at Sites 573 and 574. The Eocene-Oligocene faunal transition, however, is masked at both sites by an intercalation of metalliferous layers containing no planktonic foraminifers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biweekly sediment trap samples and concurrent hydrographic measurements collected between March 2005 and October 2008 from the Cariaco Basin, Venezuela, are used to assess the relationship between [CO3]2- and the area densities (ho A) of two species of planktonic foraminifera (Globigerinoides ruber (pink) and Globigerinoides sacculifer). Calcification temperatures were calculated for each sample using species-appropriate oxygen isotope (d18O) temperature equations that were then compared to monthly temperature profiles taken at the study site in order to determine calcification depth. Ambient [CO3]2- was determined for these calcification depths using alkalinity, pH, temperature, salinity, and nutrient concentration measurements taken during monthly hydrographic cruises. The rho A, which is representative of calcification efficiency, is determined by dividing individual foraminiferal shell weights (±0.43 µg) by their associated silhouette areas and taking the sample average. The results of this study show a strong correlation between rho A and ambient [CO3]2- for both G. ruber and G. sacculifer (R**2 = 0.89 and 0.86, respectively), confirming that [CO3]2- has a pronounced effect on the calcification of these species. Though the rho A for both species reveal a highly significant (p < 0.001) relationship with ambient [CO3]2-, linear regression reveals that the extent to which [CO3]2- influences foraminiferal calcification is species specific. Hierarchical regression analyses indicate that other environmental parameters (temperature and [PO4]3-) do not confound the use of G. ruber and G. sacculifer rho A as a predictor for [CO3]2-. This study suggests that G. ruber and G. sacculifer rho A can be used as reliable proxies for past surface ocean [CO3]2?-

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk'37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk'37 SST estimates show an average late glacial-interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial-interglacial SST change, respectively. Both the Uk'37 and the FP-12E SST estimates, as well as the planktonic foraminiferal delta18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk'37 SST estimates show a cooling of ca. 0.2-0.6°C compared to the Bølling-Allerød period. These Uk'37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pleistocene summer sea-surface temperatures (SSST) have been reconstructed on a composite core section recovered in the Subantarctic Zone of the Southern Ocean from planktonic foraminifers applying the Modern Analog Technique. The composite consists of Core PS2489-2 and the sections recovered at ODP Site 1090, and documents the last 1.83 Ma. Three distinct climatic periods can be identified that mirror the Pleistocene development of the Southern Ocean hydrography. Cold climatic conditions prevailed at 43°S during glacial as well as during interglacial periods during the early Pleistocene (1.83-0.87 Ma), indicating a northward shift of isotherms that characterize the present-day Polar Front Zone by about 7° of latitude. Evidence shows a strong linkage between Southern Ocean and low latitude climate during that interval time. Between the Mid-Pleistocene Revolution (ca. 0.9 Ma) and the Mid-Brunhes Event (ca. 0.4 Ma), we observe higher amplitude fluctuations in the SSST between glacial and interglacial periods, corresponding to the temperature range between the present Polar Front and Subantarctic Front. These climatic variations have been related to changes in the northern hemisphere ice sheets. The past 0.4 Ma are characterized by strong SSST variations, of up to 8°C, between glacials and interglacials. Only during the climatic optima (stages 11.3, 9.3, 7.5, 7.1, 5.5, and the early Holocene), SSST exceeded present SSST at the core locality (10.2°C). Although the carbonate dissolution record exhibits high variability during the Pleistocene, it can be shown that SSST estimates were not significantly biased. The Mid-Brunhes dissolution cycle as well as the Mid-Pleistocene enhanced carbonate preservation appear to belong to a global long-term variability in carbonate preservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of the tropical ocean to global climate change and the extent of sea ice in the glacial nordic seas belong to the great controversies in paleoclimatology. Our new reconstruction of peak glacial sea surface temperatures (SSTs) in the Atlantic is based on census counts of planktic foraminifera, using the Maximum Similarity Technique Version 28 (SIMMAX-28) modern analog technique with 947 modern analog samples and 119 well-dated sediment cores. Our study compares two slightly different scenarios of the Last Glacial Maximum (LGM), the Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG), and Glacial Atlantic Ocean Mapping (GLAMAP 2000) time slices. The comparison shows that the maximum LGM cooling in the Southern Hemisphere slightly preceeded that in the north. In both time slices sea ice was restricted to the north western margin of the nordic seas during glacial northern summer, while the central and eastern parts were ice-free. During northern glacial winter, sea ice advanced to the south of Iceland and Faeroe. In the central northern North Atlantic an anticyclonic gyre formed between 45° and 60°N, with a cool water mass centered west of Ireland, where glacial cooling reached a maximum of >12°C. In the subtropical ocean gyres the new reconstruction supports the glacial-to-interglacial stability of SST as shown by CLIMAP Project Members (CLIMAP) [1981]. The zonal belt of minimum SST seasonality between 2° and 6°N suggests that the LGM caloric equator occupied the same latitude as today. In contrast to the CLIMAP reconstruction, the glacial cooling of the tropical east Atlantic upwelling belt reached up to 6°-8°C during Northern Hemisphere summer. Differences between these SIMMAX-based and published U37[k]- and Mg/Ca-based equatorial SST records are ascribed to strong SST seasonalities and SST signals that were produced by different planktic species groups during different seasons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent evidence suggests that the Subtropical Convergence (STC) zone east of New Zealand shifted little from its modern position along Chatham Rise during the last glaciation, and that offshore surface waters north of the STC zone cooled only slightly. However, at nearshore core site P69 (2195 m depth), 115 km off the east coast of North Island and ca 300 km north of the modern STC zone, planktonic foraminiferal species, transfer function data and stable oxygen and carbon isotope records suggest that surface waters were colder by up to 6°C during the late last glacial period compared to the Holocene, and included a strong upwelling signature. Presently site P69 is bathed by south-flowing subtropical waters in the East Cape Current. The nearshore western end of Chatham Rise supports a major bathymetric depression, the Mernoo Saddle, through which some exchange between northern subtropical and southern subantarctic water presently occurs. It is proposed that as a result of much intensified current flows south of the Rise during the last glaciation, a consequence of more compressed subantarctic water masses, lowered sea level, and an expanded and stronger Westerly Wind system, there was accelerated leakage northwards of both Australasian Subantarctic Water and upwelled Antarctic Intermediate Water over Mernoo Saddle in a modified and intensified Southland Current. The expanded cold water masses displaced the south-flowing warm East Cape Current off southeastern North Island, and offshore divergence was accompanied by wind-assisted upwelling of nutrient-rich waters in the vicinity of P69. A comparable kind of inshore cold water jetting possibly characterised most glacial periods since the latest Miocene, and may account for the occasional occurrence of subantarctic marine fossils in onland late Cenozoic deposits north of the STC zone, rather than invoking wholesale major oscillations of the oceanic STC itself.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water masses in the Florida Straits and Bahamas region are important sources for the Northern Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located above the chemical lysocline in the Florida Straits and Bahamas region and discuss possible reasons for supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage, Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline. Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800-1000 m and below 1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the significant aragonite dissolution in 800-1000 m. The comparison of modern preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area which is highly saturated with respect to calcium carbonate.