Stable isotope record of foraminifera from South Atlantic sediments with reconstruction of paleotemperatures and paleosalinities


Autoria(s): Niebler, Hans-Stefan
Cobertura

MEDIAN LATITUDE: -44.965391 * MEDIAN LONGITUDE: 3.541074 * SOUTH-BOUND LATITUDE: -55.615500 * WEST-BOUND LONGITUDE: -59.096333 * NORTH-BOUND LATITUDE: -20.118833 * EAST-BOUND LONGITUDE: 17.364600 * DATE/TIME START: 1988-03-12T10:28:00 * DATE/TIME END: 1993-02-19T00:00:00

Data(s)

27/08/1995

Resumo

Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.

Formato

application/zip, 22 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.835327

doi:10.1594/PANGAEA.835327

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Niebler, Hans-Stefan (1995): Rekonstruktionen von Paläo-Umweltparametern anhand von stabilen Isotopen und Faunen-Vergesellschaftungen planktischer Foraminiferen im Südatlantik (Reconstruction of paleo-environmental parameters using stable isotopes and faunal assemblages of planktonic foraminifera in the South Atlantic Ocean). Berichte zur Polarforschung = Reports on Polar Research, 167, 198 pp, doi:10.2312/BzP_0167_1995

Palavras-Chave #Agulhas Basin; ANT-IX/4; ANT-VI/3; ANT-VIII/3; ANT-X/4; ANT-X/5; ANT-X/6; Atlantic Indik Ridge; Atlantic Ridge; AWI_Paleo; Brazil Basin; C. nitida; Calculated (Duplessy et al., 1991, Oceanologica Acta, 14:311-324); Candeina nitida; Cape Basin; Comment; Commun; Communality; Counting >125 µm fraction; CTD/Rosette; CTD-RO; D. anfracta; Dentagloborotalia anfracta; Depth; DEPTH, sediment/rock; Discovery Seamount; Event; Factor 1; Factor 2; Factor 3; Factor 4; Factor 5; Foraminifera, planktic; Foram plankt; G. aequilateralis; G. aequilateralis d13C; G. bermudezi; G. bradyi; G. bulloides; G. bulloides d13C; G. bulloides d18O; G. calida; G. calida d13C; G. conglobatus; G. conglobatus d13C; G. crassaf. d13C; G. crassaformis; G. dehiscens d13C; G. digitata; G. falconensis; G. glutinata; G. glutinata d13C; G. hirsuta; G. hirsuta d13C; G. inflata; G. inflata d13C; G. inflata d18O; G. menardii; G. menardii d13C; G. ruber p; G. ruber w; G. ruber w d13C; G. rubescens; G. sacculifer; G. sacculifer d13C; G. sacculifer sac; G. sacculifer sac d13C; G. scitula; G. scitula d13C; G. tenella; G. theyeri; G. tosaensis; G. truncatulinoides d; G. truncatulinoides d d13C; G. truncatulinoides s; G. truncatulinoides s d13C; G. tumida; G. tumida d13C; G. vivans; Gallitellia vivans; GeoB1716-2; GeoB1717-2; GeoB1718-1; GeoB1719-5; GeoB1720-4; GeoB1721-4; GeoB1726-2; GeoB1728-3; GeoB1729-1; GeoB2002-2; GeoB2003-1; GeoB2004-1; GeoB2007-1; GeoB2008-1; GeoB2009-1; GeoB2016-3; GeoB2018-1; GeoB2019-2; GeoB2021-4; GeoB2022-3; Giant box corer; GKG; Globigerina bulloides; Globigerina bulloides, d13C; Globigerina bulloides, d18O; Globigerina calida; Globigerina digitata; Globigerina falconensis; Globigerinella aequilateralis; Globigerinella aequilateralis, d13C; Globigerinella calida; Globigerinella calida, d13C; Globigerinita bradyi; Globigerinita glutinata; Globigerinita glutinata, d13C; Globigerinoides conglobatus; Globigerinoides conglobatus, d13C; Globigerinoides ruber pink; Globigerinoides ruber white; Globigerinoides ruber white, d13C; Globigerinoides sacculifer; Globigerinoides sacculifer, d13C; Globigerinoides sacculifer sac; Globigerinoides sacculifer sac, d13C; Globoquadrina dehiscens, d13C; Globorotalia bermudezi; Globorotalia crassaformis; Globorotalia crassaformis, d13C; Globorotalia hirsuta; Globorotalia hirsuta, d13C; Globorotalia inflata; Globorotalia inflata, d13C; Globorotalia inflata, d18O; Globorotalia menardii; Globorotalia menardii, d13C; Globorotalia scitula; Globorotalia scitula, d13C; Globorotalia theyeri; Globorotalia tosaensis; Globorotalia truncatulinoides dextral; Globorotalia truncatulinoides dextral, d13C; Globorotalia truncatulinoides sinistral; Globorotalia truncatulinoides sinistral, d13C; Globorotalia tumida; Globorotalia tumida, d13C; Globoturborotalita rubescens; Globoturborotalita tenella; Gravity corer (Kiel type); Isotope ratio mass spectrometry; KL; Latitude; LATITUDE; Longitude; LONGITUDE; M20/2; M23/1; Mass spectrometer Finnigan MAT 251; Meteor (1986); Meteor Rise; MIC; MiniCorer; MUC; MultiCorer; N. dutertrei; N. dutertrei d13C; N. pachyderma d; N. pachyderma d d13C; N. pachyderma d d18O; N. pachyderma s; N. pachyderma s d13C; N. pachyderma s d18O; Namibia Continental Margin; Neogloboquadrina dutertrei; Neogloboquadrina dutertrei, d13C; Neogloboquadrina pachyderma dextral; Neogloboquadrina pachyderma dextral, d13C; Neogloboquadrina pachyderma dextral, d18O; Neogloboquadrina pachyderma dextral and dutertrei integrade; Neogloboquadrina pachyderma sinistral; Neogloboquadrina pachyderma sinistral, d13C; Neogloboquadrina pachyderma sinistral, d18O; O. bilobata d13C; O. universa; O. universa d13C; Orbulina bilobata, d13C; Orbulina universa; Orbulina universa, d13C; P/D int; P. obliqu. d13C; P. obliquiloculata; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Paleosalinity; PalSal; PC1; PC2; PC3; PC4; PC5; Piston corer (BGR type); Polarstern; PS12; PS12/557; PS16; PS16/262; PS16/267; PS16/271; PS16/278; PS16/281; PS16/284; PS16/294; PS16/303; PS16/311; PS16/312; PS16/334; PS16/337; PS16/342; PS16/345; PS16/351; PS1654-1; PS1750-7; PS1751-2; PS1752-5; PS1754-1; PS1754-2; PS1755-1; PS1756-6; PS1759-1; PS1764-2; PS1768-8; PS1769-1; PS1775-5; PS1776-6; PS1777-7; PS1778-1; PS1779-3; PS18; PS18/229; PS18/231; PS18/232; PS18/236; PS18/237; PS18/238; PS18/239; PS18/241; PS18/242; PS18/243; PS18/244; PS18/260; PS18/261; PS18/262; PS18/263; PS18/264; PS18/269; PS2073-1; PS2075-3; PS2076-1; PS2076-3; PS2080-1; PS2081-1; PS2082-3; PS2083-1; PS2084-2; PS2085-1; PS2085-2; PS2086-3; PS2087-1; PS2102-1; PS2102-2; PS2103-2; PS2104-1; PS2105-2; PS2106-1; PS21 06AQANTX_4; PS2110-1; PS22; PS22/678; PS22/755; PS22/840; PS22/841; PS22/842; PS22/850; PS22/851; PS22/852; PS22/853; PS22/879; PS22/899; PS22/902; PS22/908; PS22/947; PS22/973; PS22 06AQANTX_5; PS2230-1; PS2231-1; PS2233-1; PS2234-1; PS2235-1; PS2237-1; PS2238-1; PS2239-1; PS2240-1; PS2241-1; PS2242-1; PS2250-5; PS2250-6; PS2272-1; PS2341-1; PS2342-1; PS2343-1; PS2351-1; PS2352-1; PS2353-2; PS2354-1; PS2363-1; PS2366-1; PS2367-1; PS2368-1; PS2372-1; PS2376-1; Pulleniatina obliquiloculata; Pulleniatina obliquiloculata, d13C; S. dehiscens; Sea surface temperature, summer; Sea surface temperature, winter; Shona Ridge; size 200-250 µm; size 250-315 µm; size 315-400 µm; SL; South African margin; South Atlantic; South Atlantic Ocean; Sphaeroidinella dehiscens; SST sum; SST win; T. clarkei; T. humilis; T. iota; T. quinqueloba; T. quinqueloba d13C; Tenuitella iota; Transfer function F75-27-5, Niebler, 1995; Turborotalita clarkei; Turborotalita humilis; Turborotalita quinqueloba; Turborotalita quinqueloba, d13C; Van Heesen Ridge; Walvis Ridge
Tipo

Dataset