29 resultados para Free actions on spheres
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We construct holomorphic families of proper holomorphic embeddings of \mathbb {C}^{k} into \mathbb {C}^{n} (0\textless k\textless n-1), so that for any two different parameters in the family, no holomorphic automorphism of \mathbb {C}^{n} can map the image of the corresponding two embeddings onto each other. As an application to the study of the group of holomorphic automorphisms of \mathbb {C}^{n}, we derive the existence of families of holomorphic \mathbb {C}^{*}-actions on \mathbb {C}^{n} (n\ge5) so that different actions in the family are not conjugate. This result is surprising in view of the long-standing holomorphic linearization problem, which, in particular, asked whether there would be more than one conjugacy class of \mathbb {C}^{*}-actions on \mathbb {C}^{n} (with prescribed linear part at a fixed point).
Resumo:
In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.
Resumo:
We prove that any isotropic positive definite function on the sphere can be written as the spherical self-convolution of an isotropic real-valued function. It is known that isotropic positive definite functions on d-dimensional Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show that the same holds true for isotropic positive definite functions on spheres and prove that this result is optimal for all odd dimensions.
Resumo:
The objective of the report is to contribute towards developing international mechanisms for SLM. The report provides an overview of international actions concerned with sustainable land management, based on contributions from members of the IASUS (International Actions for the Sustainable Use of Soil) network made at the Eurosoil Symposium. It also aims to concretise possible follow-up actions. On the occasion of the ISRIC workshop “World Soils Issues and Sustainable Development” held on 10 March 2006, the creation of a World Soils Council (WSC) was initiated. The report presents in its final chapter the WSC’s proposed vision, objectives, and structure.
Resumo:
Somatostatin analogs that activate the somatostatin subtype 2A (sst2A) receptor are used to treat neuroendocrine cancers because they inhibit tumor secretion and growth. Recently, new analogs capable of activating multiple somatostatin receptor subtypes have been developed to increase tumor responsiveness. We tested two such multi-somatostatin analogs for functional selectivity at the sst2A receptor: SOM230, which activates sst1, sst2, sst3, and sst5 receptors, and KE108, which activates all sst receptor subtypes. Both compounds are reported to act as full agonists at their target sst receptors. In sst2A-expressing HEK293 cells, somatostatin inhibited cAMP production, stimulated intracellular calcium accumulation, and increased ERK phosphorylation. SOM230 and KE108 were also potent inhibitors of cAMP accumulation, as expected. However, they antagonized somatostatin stimulation of intracellular calcium and behaved as partial agonists/antagonists for ERK phosphorylation. In pancreatic AR42J cells, which express sst2A receptors endogenously, SOM230 and KE108 were both full agonists for cAMP inhibition. However, although somatostatin increased intracellular calcium and ERK phosphorylation, SOM230 and KE108 again antagonized these effects. Distinct mechanisms were involved in sst2A receptor signaling in AR42J cells; pertussis toxin pretreatment blocked somatostatin inhibition of cAMP accumulation but not the stimulation of intracellular calcium and ERK phosphorylation. Our results demonstrate that SOM230 and KE108 behave as agonists for inhibition of adenylyl cyclase but antagonize somatostatin's actions on intracellular calcium and ERK phosphorylation. Thus, SOM230 and KE108 are not somatostatin mimics, and their functional selectivity at sst2A receptors must be considered in clinical applications where it may have important consequences for therapy.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.
Resumo:
The aim of this study was to investigate the effect of human recombinant erythropoietin (EPO) on the microcirculation and oxygenation of critically ischemic tissue and to elucidate the role of endothelial NO synthase in EPO-mediated tissue protection. Island flaps were dissected from the back skin of anesthetized male Syrian golden hamsters including a critically ischemic, hypoxic area that was perfused via a collateralized vasculature. Before ischemia, animals received an injection of epoetin beta at a dose of 5,000 U/kg body weight with (n = 7) or without (n = 7) blocking NO synthase by 30 mg/kg body weight L-NAME (Nomega-nitro-L-arginine methyl ester hydrochloride). Saline-treated animals served as control (n = 7). Ischemic tissue damage was characterized by severe hypoperfusion and inflammation, hypoxia, and accumulation of apoptotic cell nuclei after 5 h of collateralization. Erythropoietin pretreatment increased arteriolar and venular blood flow by 33% and 37%, respectively (P < 0.05), and attenuated leukocytic inflammation by approximately 75% (P < 0.05). Furthermore, partial tissue oxygen tension in the ischemic tissue increased from 8.2 to 15.8 mmHg (P < 0.05), which was paralleled by a 21% increased density of patent capillaries (P < 0.05) and a 50% reduced apoptotic cell count (P < 0.05). The improved microcirculation and oxygenation were associated with a 2.2-fold (P < 0.05) increase of endothelial NO synthase protein expression. Of interest, L-NAME completely abolished all the beneficial effects of EPO pretreatment. Our study demonstrates that, in critically ischemic and hypoxic collateralized tissue, EPO pretreatment improves tissue perfusion and oxygenation in vivo. This effect may be attributed to NO-dependent vasodilative effects and anti-inflammatory actions on the altered vascular endothelium.
Resumo:
Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.
Resumo:
Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.
Resumo:
BACKGROUND Spinal myxopapillary ependymomas (MPEs) are slowly growing ependymal gliomas with preferential manifestation in young adults. The aim of this study was to assess the outcome of patients with MPE treated with surgery, radiotherapy (RT), and/or chemotherapy. METHODS The medical records of 183 MPE patients (male: 59%) treated at the MD Anderson Cancer Center and 11 institutions from the Rare Cancer Network were retrospectively reviewed. Mean patient' age at diagnosis was 35.5 ± 15.8 years. Ninety-seven (53.0%) patients underwent surgery without RT, and 86 (47.0%) were treated with surgery and/or RT. Median RT dose was 50.4 Gy. Median follow-up was 83.9 months. RESULTS Fifteen (8.2%) patients died, 7 of unrelated cause. The estimated 10-year overall survival was 92.4% (95% CI: 87.7-97.1). Treatment failure was observed in 58 (31.7%) patients. Local failure, distant spinal relapse, and brain failure were observed in 49 (26.8%), 17 (9.3%), and 11 (6.0%) patients, respectively. The estimated 10-year progression-free survival was 61.2% (95% CI: 52.8-69.6). Age (<36 vs ≥36 y), treatment modality (surgery alone vs surgery and RT), and extent of surgery were prognostic factors for local control and progression-free survival on univariate and multivariate analysis. CONCLUSIONS In this series, treatment failure of MPE occurred in approximately one third of patients. The observed recurrence pattern of primary spinal MPE was mainly local, but a substantial number of patients failed nonlocally. Younger patients and those not treated initially with adjuvant RT or not undergoing gross total resection were significantly more likely to present with tumor recurrence/progression.
Resumo:
It is shown that admissible clauses and quasi-identities of quasivarieties generated by a single finite algebra, or equivalently, the quasiequational and universal theories of their free algebras on countably infinitely many generators, may be characterized using natural dualities. In particular, axiomatizations are obtained for the admissible clauses and quasi-identities of bounded distributive lattices, Stone algebras, Kleene algebras and lattices, and De Morgan algebras and lattices.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.
Resumo:
Let G be a reductive complex Lie group acting holomorphically on normal Stein spaces X and Y, which are locally G-biholomorphic over a common categorical quotient Q. When is there a global G-biholomorphism X → Y? If the actions of G on X and Y are what we, with justification, call generic, we prove that the obstruction to solving this local-to-global problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch. We prove that X and Y are G-biholomorphic if X is K-contractible, where K is a maximal compact subgroup of G, or if X and Y are smooth and there is a G-diffeomorphism ψ : X → Y over Q, which is holomorphic when restricted to each fibre of the quotient map X → Q. We prove a similar theorem when ψ is only a G-homeomorphism, but with an assumption about its action on G-finite functions. When G is abelian, we obtain stronger theorems. Our results can be interpreted as instances of the Oka principle for sections of the sheaf of G-biholomorphisms from X to Y over Q. This sheaf can be badly singular, even for a low-dimensional representation of SL2(ℂ). Our work is in part motivated by the linearisation problem for actions on ℂn. It follows from one of our main results that a holomorphic G-action on ℂn, which is locally G-biholomorphic over a common quotient to a generic linear action, is linearisable.