Convolution roots and differentiability of isotropic positive definite functions on spheres
Data(s) |
01/06/2014
|
---|---|
Resumo |
We prove that any isotropic positive definite function on the sphere can be written as the spherical self-convolution of an isotropic real-valued function. It is known that isotropic positive definite functions on d-dimensional Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show that the same holds true for isotropic positive definite functions on spheres and prove that this result is optimal for all odd dimensions. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/53282/1/convolution%20roots.pdf Ziegel, Johanna F. (2014). Convolution roots and differentiability of isotropic positive definite functions on spheres. Proceedings of the American Mathematical Society, 142(6), pp. 2063-2077. American Mathematical Society 10.1090/S0002-9939-2014-11989-7 <http://dx.doi.org/10.1090/S0002-9939-2014-11989-7> doi:10.7892/boris.53282 info:doi:10.1090/S0002-9939-2014-11989-7 urn:issn:0002-9939 |
Idioma(s) |
eng |
Publicador |
American Mathematical Society |
Relação |
http://boris.unibe.ch/53282/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Ziegel, Johanna F. (2014). Convolution roots and differentiability of isotropic positive definite functions on spheres. Proceedings of the American Mathematical Society, 142(6), pp. 2063-2077. American Mathematical Society 10.1090/S0002-9939-2014-11989-7 <http://dx.doi.org/10.1090/S0002-9939-2014-11989-7> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |