An Oka principle for equivariant isomorphisms


Autoria(s): Kutzschebauch, Frank; Larusson, Finnur; Schwarz, Gerald
Data(s)

2015

31/12/1969

31/12/1969

Resumo

Let G be a reductive complex Lie group acting holomorphically on normal Stein spaces X and Y, which are locally G-biholomorphic over a common categorical quotient Q. When is there a global G-biholomorphism X → Y? If the actions of G on X and Y are what we, with justification, call generic, we prove that the obstruction to solving this local-to-global problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch. We prove that X and Y are G-biholomorphic if X is K-contractible, where K is a maximal compact subgroup of G, or if X and Y are smooth and there is a G-diffeomorphism ψ : X → Y over Q, which is holomorphic when restricted to each fibre of the quotient map X → Q. We prove a similar theorem when ψ is only a G-homeomorphism, but with an assumption about its action on G-finite functions. When G is abelian, we obtain stronger theorems. Our results can be interpreted as instances of the Oka principle for sections of the sheaf of G-biholomorphisms from X to Y over Q. This sheaf can be badly singular, even for a low-dimensional representation of SL2(ℂ). Our work is in part motivated by the linearisation problem for actions on ℂn. It follows from one of our main results that a holomorphic G-action on ℂn, which is locally G-biholomorphic over a common quotient to a generic linear action, is linearisable.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/82549/1/1303.4779.pdf

http://boris.unibe.ch/82549/8/crelle-2013-0064.pdf

Kutzschebauch, Frank; Larusson, Finnur; Schwarz, Gerald (2015). An Oka principle for equivariant isomorphisms. Journal für die reine und angewandte Mathematik, 2015(706), pp. 193-214. De Gruyter 10.1515/crelle-2013-0064 <http://dx.doi.org/10.1515/crelle-2013-0064>

doi:10.7892/boris.82549

info:doi:10.1515/crelle-2013-0064

urn:issn:0075-4102

Idioma(s)

eng

Publicador

De Gruyter

Relação

http://boris.unibe.ch/82549/

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/openAccess

Fonte

Kutzschebauch, Frank; Larusson, Finnur; Schwarz, Gerald (2015). An Oka principle for equivariant isomorphisms. Journal für die reine und angewandte Mathematik, 2015(706), pp. 193-214. De Gruyter 10.1515/crelle-2013-0064 <http://dx.doi.org/10.1515/crelle-2013-0064>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed