Admissibility via natural dualities


Autoria(s): Cabrer, Leonardo Manuel; Metcalfe, George
Data(s)

01/09/2015

31/12/1969

Resumo

It is shown that admissible clauses and quasi-identities of quasivarieties generated by a single finite algebra, or equivalently, the quasiequational and universal theories of their free algebras on countably infinitely many generators, may be characterized using natural dualities. In particular, axiomatizations are obtained for the admissible clauses and quasi-identities of bounded distributive lattices, Stone algebras, Kleene algebras and lattices, and De Morgan algebras and lattices.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/68284/1/CabrerMetcalfe2014final.pdf

http://boris.unibe.ch/68284/8/1-s2.0-S0022404915000328-main.pdf

Cabrer, Leonardo Manuel; Metcalfe, George (2015). Admissibility via natural dualities. Journal of pure and applied algebra, 219(9), pp. 4229-4253. North-Holland 10.1016/j.jpaa.2015.02.015 <http://dx.doi.org/10.1016/j.jpaa.2015.02.015>

doi:10.7892/boris.68284

info:doi:10.1016/j.jpaa.2015.02.015

urn:issn:0022-4049

Idioma(s)

eng

Publicador

North-Holland

Relação

http://boris.unibe.ch/68284/

Direitos

info:eu-repo/semantics/embargoedAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Cabrer, Leonardo Manuel; Metcalfe, George (2015). Admissibility via natural dualities. Journal of pure and applied algebra, 219(9), pp. 4229-4253. North-Holland 10.1016/j.jpaa.2015.02.015 <http://dx.doi.org/10.1016/j.jpaa.2015.02.015>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed