31 resultados para cosmological perturbation theory
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Dissertation werden zwei verschiedene Aspekte des Sektors ungerader innerer Parität der mesonischen chiralen Störungstheorie (mesonische ChPT) untersucht. Als erstes wird die Ein-Schleifen-Renormierung des führenden Terms, der sog. Wess-Zumino-Witten-Wirkung, durchgeführt. Dazu muß zunächst der gesamte Ein-Schleifen-Anteil der Theorie mittels Sattelpunkt-Methode extrahiert werden. Im Anschluß isoliert man alle singulären Ein-Schleifen-Strukturen im Rahmen der Heat-Kernel-Technik. Zu guter Letzt müssen diese divergenten Anteile absorbiert werden. Dazu benötigt man eine allgemeinste anomale Lagrange-Dichte der Ordnung O(p^6), welche systematisch entwickelt wird. Erweitert man die chirale Gruppe SU(n)_L x SU(n)_R auf SU(n)_L x SU(n)_R x U(1)_V, so kommen zusätzliche Monome ins Spiel. Die renormierten Koeffizienten dieser Lagrange-Dichte, die Niederenergiekonstanten (LECs), sind zunächst freie Parameter der Theorie, die individuell fixiert werden müssen. Unter Betrachtung eines komplementären vektormesonischen Modells können die Amplituden geeigneter Prozesse bestimmt und durch Vergleich mit den Ergebnissen der mesonischen ChPT eine numerische Abschätzung einiger LECs vorgenommen werden. Im zweiten Teil wird eine konsistente Ein-Schleifen-Rechnung für den anomalen Prozeß (virtuelles) Photon + geladenes Kaon -> geladenes Kaon + neutrales Pion durchgeführt. Zur Kontrolle unserer Resultate wird eine bereits vorhandene Rechnung zur Reaktion (virtuelles) Photon + geladenes Pion -> geladenes Pion + neutrales Pion reproduziert. Unter Einbeziehung der abgeschätzten Werte der jeweiligen LECs können die zugehörigen hadronischen Strukturfunktionen numerisch bestimmt und diskutiert werden.
Resumo:
This thesis is concerned with calculations in manifestly Lorentz-invariant baryon chiral perturbation theory beyond order D=4. We investigate two different methods. The first approach consists of the inclusion of additional particles besides pions and nucleons as explicit degrees of freedom. This results in the resummation of an infinite number of higher-order terms which contribute to higher-order low-energy constants in the standard formulation. In this thesis the nucleon axial, induced pseudoscalar, and pion-nucleon form factors are investigated. They are first calculated in the standard approach up to order D=4. Next, the inclusion of the axial-vector meson a_1(1260) is considered. We find three diagrams with an axial-vector meson which are relevant to the form factors. Due to the applied renormalization scheme, however, the contributions of the two loop diagrams vanish and only a tree diagram contributes explicitly. The appearing coupling constant is fitted to experimental data of the axial form factor. The inclusion of the axial-vector meson results in an improved description of the axial form factor for higher values of momentum transfer. The contributions to the induced pseudoscalar form factor, however, are negligible for the considered momentum transfer, and the axial-vector meson does not contribute to the pion-nucleon form factor. The second method consists in the explicit calculation of higher-order diagrams. This thesis describes the applied renormalization scheme and shows that all symmetries and the power counting are preserved. As an application we determine the nucleon mass up to order D=6 which includes the evaluation of two-loop diagrams. This is the first complete calculation in manifestly Lorentz-invariant baryon chiral perturbation theory at the two-loop level. The numerical contributions of the terms of order D=5 and D=6 are estimated, and we investigate their pion-mass dependence. Furthermore, the higher-order terms of the nucleon sigma term are determined with the help of the Feynman-Hellmann theorem.
Resumo:
This thesis is concerned with the calculation of virtual Compton scattering (VCS) in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order in the momentum and quark-mass expansion. In the one-photon-exchange approximation, the VCS process is experimentally accessible in photon electro-production and has been measured at the MAMI facility in Mainz, at MIT-Bates, and at Jefferson Lab. Through VCS one gains new information on the nucleon structure beyond its static properties, such as charge, magnetic moments, or form factors. The nucleon response to an incident electromagnetic field is parameterized in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs represent the induced electric and magnetic dipole polarizability of a medium. For the vector GPs, a classical interpretation is less straightforward. They are derived from a multipole expansion of the VCS amplitude. This thesis describes the first calculation of all GPs within the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. Because of the comparatively large number of diagrams - 100 one-loop diagrams need to be calculated - several computer programs were developed dealing with different aspects of Feynman diagram calculations. One can distinguish between two areas of development, the first concerning the algebraic manipulations of large expressions, and the second dealing with numerical instabilities in the calculation of one-loop integrals. In this thesis we describe our approach using Mathematica and FORM for algebraic tasks, and C for the numerical evaluations. We use our results for real Compton scattering to fix the two unknown low-energy constants emerging at fourth order. Furthermore, we present the results for the differential cross sections and the generalized polarizabilities of VCS off the proton.
Resumo:
In der vorliegenden Arbeit wird die Variation abgeschlossener Unterräume eines Hilbertraumes untersucht, die mit isolierten Komponenten der Spektren von selbstadjungierten Operatoren unter beschränkten additiven Störungen assoziiert sind. Von besonderem Interesse ist hierbei die am wenigsten restriktive Bedingung an die Norm der Störung, die sicherstellt, dass die Differenz der zugehörigen orthogonalen Projektionen eine strikte Normkontraktion darstellt. Es wird ein Überblick über die bisher erzielten Resultate gegeben. Basierend auf einem Iterationsansatz wird eine allgemeine Schranke an die Variation der Unterräume für Störungen erzielt, die glatt von einem reellen Parameter abhängen. Durch Einführung eines Kopplungsparameters wird das Ergebnis auf den Fall additiver Störungen angewendet. Auf diese Weise werden zuvor bekannte Ergebnisse verbessert. Im Falle von additiven Störungen werden die Schranken an die Variation der Unterräume durch ein Optimierungsverfahren für die Stützstellen im Iterationsansatz weiter verschärft. Die zugehörigen Ergebnisse sind die besten, die bis zum jetzigen Zeitpunkt erzielt wurden.
Resumo:
Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
Die Daten, die im Jahr 2000 mit dem NA48-Detektoraufgenommen wurden,werden in dieser Arbeit dazuverwendet, das Verzweigungsverhältnis des ZerfallsKs -> gamma gamma zu bestimmen.Zur Reduktion der Unsicherheit auf diese Messungwurde ausserdem das Verhältnis der Zerfallsbreitender Zerfälle Kl -> gamma gamma undKl -> 3 pi^0:Gamma(Kl -> gamma gamma)/Gamma(Kl -> 3 pi^0)gemessen. Für das Verzweigungsverhältnis vonKs -> gamma gamma existiert eine eindeutige undendliche Vorhersage in der Ordnung O(p^4) derChiralen Störungstheorie (CHPT) vonBR(Ks -> gamma gamma)(O(p^4)) = (2,1 +- 0,1)x10^(-6).Alle bisherigen Messungen befanden sich in guterÜbereinstimmung mit dieser Vorhersage.Die Ergebnisse der für diese Arbeit durchgeführten Analyse lauten:
BR(Ks -> gamma gamma) | = | (2,78 +- 0,05(stat) +- 0,04 |
Gamma(Ks -> gamma gamma )/Gamma(Kl-> gamma gamma) | = | 2,71 +- 0.08 |
Gamma(Kl -> gamma gamma )/Gamma(Kl-> 3 pi^0) | = | (2,80 +- 0,01(stat) +- 0,02 |
BR(Kl -> gamma gamma) | = | (5,90 +- 0,02(stat) +- 0,04 |
Resumo:
Spin-Restricted Coupled-Cluster-Theorie fuer offenschaligeZustaende Die Berechnung von Energien und Eigenschaften offenschaligerAtome undMolekuele mit Hilfe der hochgenauenCoupled-Cluster-(CC)-Theoriewar bisher mit einem - im Vergleich zur BerechnunggeschlossenschaligerZustaende - erhoehten Rechenaufwand und der sogenannten'Spinkontamination' behaftet. Um diesen Problemenentgegenzuwirken,stellten P.G.Szalay und J.Gauss die 'Spin-RestrictedCoupled-Cluster-Theorie' vor. Im Rahmen dieser Arbeit wird die urspruenglich aufDublett-Zustaendebeschraenkte Theorie so verallgemeinert, dass jederbeliebige Spinzustandmit einem einheitlichen Satz von Gleichungen beschriebenwerden kann. Dadie Moller-Plesset-(MP)-Stoerungstheorie bei der BerechnungoffenschaligerZustaende mit aehnlichen Problemen behaftet ist, wirddarueberhinaus dieSpin-Restricted-(SR)-MP-Stoerungstheorie zweiter und dritterOrdnungeingefuehrt. Um Molekueleigenschaften berechnen zu koennen,werdenanalytische Ableitungen der Energie sowohl fuer den SR-CC-als auch denSR-MP-Ansatz hergeleitet. Bei den folgenden Testrechnungenstellt sichheraus, dass sowohl SR-CC- als auch SR-MP-Ansaetze diegleiche Genauigkeitbieten wie konventionelle CC- und MP-Ansaetze. Dabei sinddieSpinerwartungswerte der SR-CC-Wellenfunktionen identisch mitdem exaktenWert. Im Rahmen der Testrechnungen stellt sich heraus, dassder SR-CC-Ansatz nicht 'size-konsistent', der numerische Fehler abervernachlaessigbar klein ist. Abschliessend werden dieHintergruende derfehlenden 'Size-Konsistenz' diskutiert.
Resumo:
Diese Arbeit untersucht die longitudinale und transversaleStrahldynamik am Mainzer Mikrotron MAMI. Die gemessenen Abbildungseigenschaften werden mit den Design-Rechnungen verglichen. Dadurch konnte die Strahlqualitaet von MAMI B und das Design der neuen HDSM Mikrotronstufe verbessert werden. Es wurde eine Stoerungsrechnung formuliert, um die 6-DAbbildungsmatrix entlang der Beschleunigungsstrecke zu berechnen. Ausgehend von der linearisierten Hamilton Funktion wird die Transfermatrix M in eine unendliche Summe ueber Matrizen M(n) zerlegt, die jeweils eine n-fache Wechselwirkung des Strahls mit dem Quadrupolanteil des Fuehrungsfeldes darstellen. Dank des tieferen Einblicks in die Auswirkung von Feldfehlern konnte damit das Mikrotron-Modell leicht an die gemessenen Transfermatrizen angepasst werden. Ferner wurde die Identifizierung und Korrektur anti-symmetrischer Feldfehler in den Mikrotron-Dipolen untersucht. Es wurde ein Messverfahren entwickelt, um kleine Feldkomponenten in der Bahnebene von der Groessenordnung 10E-3 zu erkennen. Das vorgeschlagene Verfahren wurde mit Hilfe des Simulationsprogramms TOSCA ausgetestet. Schliesslich wurde die Stabilitaet der Longitudinaloptik verbessert. Dadurch konnte eine hochpraezise Energiestabi-lisierung verwirklicht werden. Bei 855 MeV Strahlenergie wird eine Stabilitaet von etwa 10E-6 erreicht.
Resumo:
Das Phasenverhalten und die Grenzflächeneigenschaften vonPolymeren in superkritischer Lösung werden anhand einesvergröberten Kugel-Feder-Modells für das ReferenzsystemHexadekan-CO2 untersucht. Zur Bestimmung der Parameter imPotential setzt man die kritischen Punkte von Simulation undExperiment gleich. Wechselwirkungen zwischen beidenKomponenten werden durch eine modifizierteLorentz-Berthelot-Regel modelliert. Die Übereinstimmung mitden Experimenten ist sehr gut - insbesondere kann dasPhasendiagramm des Mischsystems inklusive kritischer Linienreproduziert werden. Ein Vergleich mit numerischenStörungsrechnungen (TPT1) liefert eine qualitativeÜbereinstimmung und Hinweise zur Verbesserung derverwendeten Zustandsgleichung. Aufbauend auf diesen Betrachtungen werden die Frühstadiender Keimbildung untersucht. Für das Lennard-Jones-Systemwird zum ersten Mal der Übergang vom homogenen Gas zu einemeinzelnen Tropfen im endlichen Volumen direkt nachgewiesenund quantifiziert. Die freie Energie von kleinen Clusternwird mit einem einfachen, klassischen Nukleationsmodellbestimmt und nach oben abgeschätzt. Die vorgestellten Untersuchungen wurden durch eineWeiterentwicklung des Umbrella-Sampling-Algorithmusermöglicht. Hierbei wird die Simulation in mehrereSimulationsfenster unterteilt, die nacheinander abgearbeitetwerden. Die Methode erlaubt eine Bestimmung derFreien-Energie-Landschaft an einer beliebigen Stelle desPhasendiagramms. Der Fehler ist kontrollierbar undunabhängig von der Art der Unterteilung.
Resumo:
The main part of this thesis describes a method of calculating the massless two-loop two-point function which allows expanding the integral up to an arbitrary order in the dimensional regularization parameter epsilon by rewriting it as a double Mellin-Barnes integral. Closing the contour and collecting the residues then transforms this integral into a form that enables us to utilize S. Weinzierl's computer library nestedsums. We could show that multiple zeta values and rational numbers are sufficient for expanding the massless two-loop two-point function to all orders in epsilon. We then use the Hopf algebra of Feynman diagrams and its antipode, to investigate the appearance of Riemann's zeta function in counterterms of Feynman diagrams in massless Yukawa theory and massless QED. The class of Feynman diagrams we consider consists of graphs built from primitive one-loop diagrams and the non-planar vertex correction, where the vertex corrections only depend on one external momentum. We showed the absence of powers of pi in the counterterms of the non-planar vertex correction and diagrams built by shuffling it with the one-loop vertex correction. We also found the invariance of some coefficients of zeta functions under a change of momentum flow through these vertex corrections.
Resumo:
Die Messung der Elektroproduktion geladener Pionen in der Nähe der Produktionsschwelle ermöglicht die Bestimmung des axialen Formfaktors des Nukleons G_A(Q²) und aus seinem Verlauf die Extraktion der axialen Masse M_A. Diese Größe kann im Rahmen der chiralen Störungstheorie vorhergesagt werden, so daß ihre experimentelle Bestimmung eine Überprüfung der theoretischen Beschreibung des Nukleons erlaubt. Im Rahmen dieser Arbeit wurden die bereits am Institut für Kernphysik der Universität Mainz in der A1-Kollaboration durchgeführten Messungen der Reaktion H(e,e'Pi+)n bei einer Schwerpunktsenergie von W = 1125 MeV und einem Vierer- impulsübertrag Q² von 0.117, 0.195 und 0.273 (GeV/c)² durch eine weitere Messung bei Q² = 0.058 (GeV/c)² ergänzt. In einer zweiten Meßperiode wurden zusätzlich die Messungen für die Q²-Werte von 0.117 und 0.195 (GeV/c)² wiederholt. Für alle Q²-Werte wurden Daten bei mindestens drei verschiedenen Werten der Polarisation des virtuellen Photons genommen, so daß für alle Messungen eine Rosenbluthseparation durchgeführt werden konnte, um den transversalen und den longitudinalen Anteil des Wirkungsquerschnitts zu bestimmen. Das Ergebnis für Q² = 0.195 (GeV/c)² stimmt im Rahmen der Fehler mit dem alten Ergebnis überein, für Q² = 0.117 (GeV/c)² ergibt sich eine deutliche Abweichung des longitudinalen Anteils. Das Ergebnis für Q² = 0.058 (GeV/c)² liegt unter der aus den alten Messungen gewonnenen Vorhersage. Der induzierte pseudoskalare Formfaktor des Nukleons G_P(Q²) kann ebenfalls in der Pionelektroproduktion bestimmt werden, wenn die Messung bei einer Schwerpunktsenergie nur wenige MeV über der Produktionsschwelle stattfindet. Eine solche Messung erfordert den Nachweis von Pionen mit kinetischen Energien unter 35 MeV, für den die in der A1-Kollaboration vorhandenen Spektrometer nicht geeignet sind. Im apparativen Teil der Arbeit wurde daher ein Szintillatorhodoskop für ein dediziertes Pionspektrometer mit kurzer Weglänge gebaut und getestet. Außerdem wurden für dieses sogenannte Short-Orbit-Spektrometer drei Kollimatoren entworfen und eingebaut.
Resumo:
Die Berechnung von experimentell überprüfbaren Vorhersagen aus dem Standardmodell mit Hilfe störungstheoretischer Methoden ist schwierig. Die Herausforderungen liegen in der Berechnung immer komplizierterer Feynman-Integrale und dem zunehmenden Umfang der Rechnungen für Streuprozesse mit vielen Teilchen. Neue mathematische Methoden müssen daher entwickelt und die zunehmende Komplexität durch eine Automatisierung der Berechnungen gezähmt werden. In Kapitel 2 wird eine kurze Einführung in diese Thematik gegeben. Die nachfolgenden Kapitel sind dann einzelnen Beiträgen zur Lösung dieser Probleme gewidmet. In Kapitel 3 stellen wir ein Projekt vor, das für die Analysen der LHC-Daten wichtig sein wird. Ziel des Projekts ist die Berechnung von Einschleifen-Korrekturen zu Prozessen mit vielen Teilchen im Endzustand. Das numerische Verfahren wird dargestellt und erklärt. Es verwendet Helizitätsspinoren und darauf aufbauend eine neue Tensorreduktionsmethode, die Probleme mit inversen Gram-Determinanten weitgehend vermeidet. Es wurde ein Computerprogramm entwickelt, das die Berechnungen automatisiert ausführen kann. Die Implementierung wird beschrieben und Details über die Optimierung und Verifizierung präsentiert. Mit analytischen Methoden beschäftigt sich das vierte Kapitel. Darin wird das xloopsnosp-Projekt vorgestellt, das verschiedene Feynman-Integrale mit beliebigen Massen und Impulskonfigurationen analytisch berechnen kann. Die wesentlichen mathematischen Methoden, die xloops zur Lösung der Integrale verwendet, werden erklärt. Zwei Ideen für neue Berechnungsverfahren werden präsentiert, die sich mit diesen Methoden realisieren lassen. Das ist zum einen die einheitliche Berechnung von Einschleifen-N-Punkt-Integralen, und zum anderen die automatisierte Reihenentwicklung von Integrallösungen in höhere Potenzen des dimensionalen Regularisierungsparameters $epsilon$. Zum letzteren Verfahren werden erste Ergebnisse vorgestellt. Die Nützlichkeit der automatisierten Reihenentwicklung aus Kapitel 4 hängt von der numerischen Auswertbarkeit der Entwicklungskoeffizienten ab. Die Koeffizienten sind im allgemeinen Multiple Polylogarithmen. In Kapitel 5 wird ein Verfahren für deren numerische Auswertung vorgestellt. Dieses neue Verfahren für Multiple Polylogarithmen wurde zusammen mit bekannten Verfahren für andere Polylogarithmus-Funktionen als Bestandteil der CC-Bibliothek ginac implementiert.
Resumo:
In this thesis we consider three different models for strongly correlated electrons, namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model, both with a semi-elliptical density of states in the limit of infinite dimensions d, and the attractive Hubbard model on a square lattice in d=2.
In the first part, we study a two-band Hubbard model with unequal bandwidths and anisotropic Hund's rule coupling (J_z-model) in the limit of infinite dimensions within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result is that the J_z-model describes the occurrence of an orbital-selective Mott transition (OSMT), in contrast to earlier findings. We investigate the model with a high-precision DMFT algorithm, which was developed as part of this thesis and which supplements QMC with a high-frequency expansion of the self-energy.
The main advantage of this scheme is the extraordinary accuracy of the numerical solutions, which can be obtained already with moderate computational effort, so that studies of multi-orbital systems within the DMFT+QMC are strongly improved. We also found that a suitably defined
Falicov-Kimball (FK) model exhibits an OSMT, revealing the close connection of the Falicov-Kimball physics to the J_z-model in the OSM phase.
In the second part of this thesis we study the attractive Hubbard model in two spatial dimensions within second-order self-consistent perturbation theory.
This model is considered on a square lattice at finite doping and at low temperatures. Our main result is that the predictions of first-order perturbation theory (Hartree-Fock approximation) are renormalized by a factor of the order of unity even at arbitrarily weak interaction (U->0). The renormalization factor q can be evaluated as a function of the filling n for 0
Resumo:
The quark condensate is a fundamental free parameter of Chiral Perturbation Theory ($chi PT$), since it determines the relative size of the mass and momentum terms in the power expansion. In order to confirm or contradict the assumption of a large quark condensate, on which $chi PT$ is based, experimental tests are needed. In particular, the $S$-wave $pipi$ scattering lengths $a_0^0$ and $a_0^2$ can be predicted precisely within $chi PT$ as a function of this parameter and can be measured very cleanly in the decay $K^{pm} to pi^{+} pi^{-} e^{pm} stackrel{mbox{tiny(---)}}{nu_e}$ ($K_{e4}$). About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were analysed and 342,859 $K_{e4}$ candidates were selected. The background contamination in the sample could be reduced down to 0.3% and it could be estimated directly from the data, by selecting events with the same signature as $K_{e4}$, but requiring for the electron the opposite charge with respect to the kaon, the so-called ``wrong sign'' events. This is a clean background sample, since the kaon decay with $Delta S=-Delta Q$, that would be the only source of signal, can only take place through two weak decays and is therefore strongly suppressed. The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were computed under the assumption of a fixed kaon momentum of 60 GeV/$c$ along the $z$ axis, so that the neutrino momentum could be obtained without ambiguity. The measurement of the form factors and of the $pipi$ scattering length $a_0^0$ was performed in a single step by comparing the five-dimensional distributions of data and MC in the kinematic variables. The MC distributions were corrected in order to properly take into account the trigger and selection efficiencies of the data and the background contamination. The following parameter values were obtained from a binned maximum likelihood fit, where $a_0^2$ was expressed as a function of $a_0^0$ according to the prediction of chiral perturbation theory: f'_s/f_s = 0.133+- 0.013(stat)+- 0.026(syst) f''_s/f_s = -0.041+- 0.013(stat)+- 0.020(syst) f_e/f_s = 0.221+- 0.051(stat)+- 0.105(syst) f'_e/f_s = -0.459+- 0.170(stat)+- 0.316(syst) tilde{f_p}/f_s = -0.112+- 0.013(stat)+- 0.023(syst) g_p/f_s = 0.892+- 0.012(stat)+- 0.025(syst) g'_p/f_s = 0.114+- 0.015(stat)+- 0.022(syst) h_p/f_s = -0.380+- 0.028(stat)+- 0.050(syst) a_0^0 = 0.246+- 0.009(stat)+- 0.012(syst)}+- 0.002(theor), where the statistical uncertainty only includes the effect of the data statistics and the theoretical uncertainty is due to the width of the allowed band for $a_0^2$.